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1 Introduction to Riemann Surfaces

In this course, we will study two main topics:

1. Introduction to Riemann surfaces.

2. Introduction to several complex variables.

1.1 Complex charts and atlases

Definition 1.1. Let X be a Hasudorff topological space. A complex chart on X is a
homeomorphism ϕ : U → V , where U ⊆ X and V ⊆ C are open. Two charts ϕ1 : U1 → V1

and ϕ2 : U2 → V2 are called compatible if U1 ∩U2 = ∅ or the transition map ϕ2 ◦ϕ−1
1 :

ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2) is holomorphic. A complex atlas on X is a collection of
pairwise compatible charts {ϕα : Uα → Vα}α∈A such that X =

⋃
α∈A Uα.

Remark 1.1. It follows that ϕ2 ◦ ϕ−1
1 is a holomorphic diffeomorphism.

Proposition 1.1. Let A = {ϕα : Uα → Vα} be a complex atlas for X. The collection

Â = {ϕ : U → V : ϕ is a chart on X,ϕ and ϕα are compatible ∀α} is a complex atlas for

X, A ⊆ Â , and this atlas is maximal. If A ⊆ B, then B ⊆ Â

Proof. We only need to check that Â is an atlas. Let ϕ1 : U1 → V1, ϕ2 : U2 → V2 be charts
in Â , and check that ϕ2 ◦ ϕ−1

1 is holomorphic: Let z ∈ ϕ1(U1 ∩ U2) and let ϕα : Uα → Vα
be a chart in A such that ϕ−1

1 (z) ∈ Uα. Then ϕ1(U1 ∩ U2 ∩ Uα) is a neighborhood of z,
and ϕ2 ◦ ϕ−1

1 :

ϕ1(U1 ∩ U2 ∩ Uα) ϕα(U1 ∩ U2 ∩ Uα) ϕ2(U1 ∩ U2 ∩ Uα)
ϕα◦ϕ−1

1 ϕ2◦ϕ−1
α

is holomorphic.

Remark 1.2. An atlas of the form Â is called maximal.

Definition 1.2. We say that atlases A = {ϕα : Uα → Vα},B = {ϕ′β : U ′β → V ′β} are
equivalent if ϕα, ϕ

′
β are compatible for all α, β.

Remark 1.3. A is equivalent to B iff Â = B̂.

1.2 Riemann surfaces

Definition 1.3. A complex structure on X is given by a maximal atlas on X. A
Riemann surface is a connected, Hausdorff topological space equipped with a complex
structure.
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Example 1.1. Let Ω ⊆ C be open and connected. Then Ω is a Riemann surface when
equipped with the atlas {1 : Ω→ Ω}.

Example 1.2. The Riemann sphere Ĉ∪{∞} with the usual topology is a Riemann surface.
Let U1 = C, U2 = Ĉ \ {0} be open, and define the charts ϕ1 : U1 → C sending z 7→ z and
ϕ2 : U2 → C send

ϕ2(z) =

{
1/z z ∈ C \ {0}
0 z =∞.

To check compatibility, ϕ2 ◦ϕ−1
1 (z) = 1/z as a function from C \ {0} → C \ {0}. The atlas

(ϕj , Uj)j=1,2 gives rise to a Riemann surface structure on Ĉ.

Example 1.3 (complex tori). Let e1, e2 ∈ C be R-linearly independent, and let Λ be the
lattice Λ = {me1 + ne2 : m,n ∈ Z} ⊆ C. We have the equivalence relation z ∼ w if
z − w ∈ Λ and let C/Λ = z + Λ : z ∈ C} be the collection of equivalence classes. We have
the projection map π : C → C/Λ sending z 7→ z + Λ. We equip C/Λ with the strongest
topology such that π is continuous: O ⊆ C/Λ is open if π−1(O) ⊆ C is open. Then C/Λ is
connected and compact. Compactness follows from C/Λ = π({te1 + se2 : 0 ≤ t, s ≤ 1}).

We claim that π is an open map. Let V ⊆ C be open. Then π(V ) ⊆ C/Λ is open iff
π−1(π(V )) ⊆ C is open. This is π−1(π(V )) = {z ∈ C : π(z) ∈ π(V )} =

⋃
ζ∈Λ(ζ + V ).

We need complex charts on C/Λ: Let V ⊆ C be open such that no 2 distinct points of V
are equivalent under Λ. Then π|V : V → π(V ) = U is a homeomorphism, and ϕ = (πV )−1

is a chart.
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2 Holomorphic Curves in C2 and Holomorphic Functions on
Riemann Surfaces

2.1 Holomorphic curves in C2

Last time, we were discussing complex tori.

Example 2.1 (complex tori). We have X = C/Λ, where Λ is a lattice. We have a
natural quotient map π : C → C/Λ. Let V1, V2 be the images of two charts ϕi : Ui → Vi,
i = 1, 2. Consider ϕ2 ◦ ϕ−1

1 (z) =: ψ(z). Then for z ∈ ϕ1(U1 ∩U2), π|V2(ψ(z)) = π|V1(z), so
ψ(z)− z ∈ Λ. Since Λ is discrete, ψ(z)− z is locally constant. So it is holomorphic.

Here is another natural example of a Riemann surface.

Example 2.2 (holomorphic curves in C2 = C2
z,w). Let Ω ⊆ C2 be open, and let f ∈ Hol(Ω);

that is, f ∈ C1(Ω), and f(z, w) is separately holomorphic: z 7→ f(z, w) is holomorphic for
all w and w 7→ f(z, w) is holomorphic for all z. We have the Cauchy-Riemann equations

∂f

∂z
(z, w) = 0,

∂f

∂w
(z, w) = 0.

Assume that (∂f∂z ,
∂f
∂w ) 6= 0 for all (z, w) ∈ f−1({0}).

We claim that X = f−1({0}) is a (possibly disconnected) Riemann surface. Let
(z0, w0) ∈ X. If f ′w(z0, w0) 6= 0, then by the holomorphic implicit function theorem (which
we will prove), there exist an open neighborhood V ⊆ C2 of (z0, w0), z0 ∈ U ⊆ C, and
g ∈ Hol(U) such that X ∩ V = {(z, g(z)) : z ∈ U}. So the projection πz : X ∩ V → U
sending (z, w) 7→ z is a chart. Similarly, if f ′z(z0, w0) 6= 0, we have locally near (z0, w0):
X ∩ V = {(h(w), w)}, where h is holomorphic. So the projection πw : X ∩ V → C is a
chart. Compatibility of charts is the following diagram:

X Uw

Uz

πw

πz
πw◦π−1

z

Theorem 2.1 (holomorphic implicit function theorem). Let f(z, w) : C2 → C be holo-
morphic near (0, 0) ∈ C2 with f ′(a, b) 6= 0. Then f = 0 determines a holomorphic map
ϕ : C→ C in a neighborhood of (a, b).

Proof. Let f(z, w) be holomorphic near (0, 0) ∈ C2 with f(0, 0) = 0 and f ′w(0, 0) 6= 0.
Choose r > 0 so that w 7→ f(0, w) is holomorphic when |w| < 2r and f(0, w) 6= 0 when
0 < |w| < 2r. Then choose δ > 0 such that f is holomorphic when |w| < 3r/2, |z| < δ and
such that f(z, w) 6= 0 when |w| = r, |z| < δ. By the argument principle, for |z| < δ,

|{w ∈ D(0, r) : f(z, w) = 0}| = 1

2πi

∫
|w|=r

f ′w(z, w)

f(z, w)
dw,
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where the right hand side is holomorphic in z. So for all z with |z| < δ, the equation
f(z, w) = 0 has exactly 1 root w = w(z) in D(0, r). Write

w(z) =
1

2πi

∫
|w|=r

wf ′w(z, w)

f(z, w)
dw, |z| < δ

by the residue theorem.

2.2 Holomorphic functions on Riemann surfaces

Definition 2.1. Let X be a Riemann surface equipped with an atlas {ϕα : Uα → Vα}. We
say that f : X → C is holomorphic if for all α, f ◦ ϕ−1

α ∈ Hol(Vα). Let Y be a Riemann
surface equipped with an atlas {ϕ′β : U ′β → V ′β}. A continuous map f : X → Y is called

holomorphic if for all α, β, ϕ′β ◦ f ◦ ϕ−1
α : ϕα(f−1(U ′β) ∩ Uα)→ V ′β is holomorphic.

Theorem 2.2. Let X,Y be Riemann surfaces, and let fj ∈ Hol(X,Y ), j = 1, 2. Assume
that there exists A ⊆ X with a limit point a ∈ X such that f1 = f2 on A. Then f1 ≡ f2.

Proof. (Sketch) Use the connectedness of the Riemann surfaces to transplant the corre-
sponding result from complex analysis.

Proposition 2.1 (local normal form for f ∈ Hol(X,Y )). Let X,Y be Riemann surfaces,
and let fj ∈ Hol(X,Y ) be non-constant. Let a ∈ X. Then there exist complex charts
ϕ : U → V on X with a ∈ U , ϕ(a) = 0 and ψ : U ′ → V ; on Y with f(a) ∈ U ′, ψ(f(a)) = 0,
U ⊆ f−1(U ′) such that the holomorphic function

F = ψ ◦ f ◦ ϕ−1 : V → V ′

is of the form F (z) = zk for some k ∈ N+.

Remark 2.1. The integer k is independent is independent of the charts.

Proof. Take any charts ϕ,ψ centered at a, f(a). Then F̃ (z) = (ψ◦f◦ϕ−1)(z) ∈ Hol(neigh(0,C)),
and F̃ (0) = 0. So F̃ (z) = zkg(z), where g is holomorphic and non-vanishing. In a simply
connected neighborhood of 0, there exists a holomorphic function h 6= 0 such that g = hk.
The map κ(z) = zh(z) is a holomorphic diffeomorphism from neigh(0,C)→ neigh(0,C) by
the inverse function theorem. Replace ϕ by κ ◦ ϕ, we get [ψ ◦ f ◦ (κ ◦ ϕ)−1](z) = zk.

We will discuss the integer k more next time.
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3 Open Mapping, Maximum Principle, Covering Spaces, and
Lifts

3.1 The open mapping and the maximum principle

Last time, we showed a local normal form for holomorphic functions:

Proposition 3.1 (local normal form for f ∈ Hol(X,Y )). Let X,Y be Riemann surfaces,
and let fj ∈ Hol(X,Y ) be non-constant. Let a ∈ X. Then there exist complex charts
ϕ : U → V on X with a ∈ U , ϕ(a) = 0 and ψ : U ′ → V ; on Y with f(a) ∈ U ′, ψ(f(a)) = 0,
U ⊆ f−1(U ′) such that the holomorphic function

F = ψ ◦ f ◦ ϕ−1 : V → V ′

is of the form F (z) = zk for some k ∈ N+. The integer k is independent of the choice of
charts.

Definition 3.1. The integer k is sometimes called the multiplicity of f at a. If k =
k(a) > 1, then a is called a ramification point.

Corollary 3.1. f ∈ Hol(X,Y ) has no ramification points if and only if f is a local home-
omorphism.

Proof. For any x ∈ X, there is a neighborhood U ⊆ X such that f : U → f(U) is a
homeomorphism.

Corollary 3.2 (open mapping theorem). Let f ∈ Hol(X,Y ) be non-constant. Then f is
open.

Corollary 3.3 (maximum principle). Let f ∈ Hol(X,C) be non-constant. Then x 7→ |f(x)|
does not attain its maximum.

Proof. If supx∈X |f(x)| = |f(a)| for some a, then f(X) ⊆ {|z| ≤ |f(a)|}. f(X) is open, so
f(X) ⊆ {|z| > f(a)}.

Remark 3.1. In particular, every holomorphic function on a compact Riemann surface is
constant.

3.2 Covering spaces and lifts of mappings

Proposition 3.2. Let X be a Riemann surface, and let Y be a Hausdorff space with a
local homeomorphism p : Y → X. There exists a unique complex structure on Y such that
p : Y → X is holomorphic.
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Proof. Existence: Let ϕ : U → V be a chart on X such that p : p−1(U) → U is a
homeomorphism. Then ϕ ◦ p : p−1(U) → V is a complex chart on Y . These charts define
an atlas. Then p is holomorphic.

Let X,Y, Z be Hausdorff spaces, let p : Y → X be a local homeomorphism, and let
f : Z → X be continuous. We want a lift g : Z → Y of f such that p ◦ g = f .

Y

Z X

p
g

f

Proposition 3.3 (uniqueness of lifts). Assume that Z is connected. If g1, g2 are lifts of f
with g1(z0) = g2(z2), then g1 = g2.

Proof. Let A = {z ∈ Z : g1(z) = g2(z)} be closed, and let z0 ∈ A. A is open: Let
z ∈ A, y ∈ g1(z). Then there exists a neighborhood V of y such that p : V → p(V ) is a
homeomorphism. Let W be a neighborhood of z such that g1(w) ⊆ V , j = 1, 2. When
z′ ∈W , p(g1(z′)) = p(g2(z′)); p is injective, so g1 = g2 on W .

Remark 3.2. Assume that X,Y, Z are Riemann surfaces with both p and f holomor-
phic. Let f̃ : Z → Y be a lift of f . Then f̃ is holomorphic: p ◦ =̃f , where p is a local
biholomorphism, so we can locally invert it to get holomorphy of f̃ .

Definition 3.2. Let X,Y be topological spaces. A continuous map p : Y → X is a
covering map if for all x ∈ X, there is a neighborhood U ⊆ X such that p−1(U) is of
the form p−1(U) =

⋃
k∈K Vk, where the Vk are open, disjoint, and p|Vk : Vk → U is a

homeomorphism for all k. We say that U is evenly covered by p.

Example 3.1. The function C→ C \ {0} given by z 7→ ez is a covering map.

Example 3.2. Let Λ be a lattice in C. The projection map C→ C/Λ is a covering map.

Theorem 3.1. Let p : Y → X be a covering map, and let γ : [0, 1] → X be a curve
(continuous map) in X. Then for any y ∈ p−1(γ(0)), there is a unique lift γ̃ of γ with
γ̃(0) = y.

Y

[0, 1] X

p
γ̃

γ

Proof. Consider the open cover of [0, 1] by sets of the form γ−1(U), where U ⊆ X is
evenly covered. There exists a partition 0 = t0 < t1 < · · · < tn = 1 and open sets
Uk ⊆ X, 1 ≤ k ≤ n evenly covered by p such that γ([tk−1, tk]) ⊆ Uk for all k (use
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the existence of a Lebesgue number of the cover). Arguing inductively, assume that we
have already constructed a lift γ̃ of [0, tk−1], where k ≥ 1. We have that p ◦ γ̃ = γ on
[0, tk−1]. In particular, γ̃(tk−1) ∈ p−1(Uk) =

⋃
j Vkj . So γ̃(tk−i) ∈ Vkj for some j. We set

γ̃(t) = (p|Vkj )
−1 ◦ (γ(t)) for tj−1 ≤ t ≤ tk,s thus lifting γ̃ defined on [0, tk]. The uniqueness

follows.

Next time, we will show the existence of universal covering spaces that are simply
connected. Eventually, we will show that there are only three such simply connected
Riemann surfaces.
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4 Lifting of Homotopic Curves and Existence of Lifts

4.1 Lifting of homotopic curves

Last time we introduced the idea of a covering map p : Y → X. It has the following path
lifting property:

Y

[0, 1] X

p
γ̃

γ

Remark 4.1. If X is path-connected (ok for Riemann surfaces), then p : Y → X is
surjective: Let x0, x1 ∈ X, and let γ be a path joining x0, x1. Then for any y ∈ p−1(x0),
there eis a unique lift γ̃[0, 1]→ Y such that γ̃(0) = y and γ̃(1) ∈ p1(x1). This gives rise to
a bijection p−1(x0)→ p−1(x1). Moreover, the cardinality of p−1(x) is constant.

Theorem 4.1 (lifting of homotopy curves1). Let X,Y be Hausdorff, and let p : Y → X
be a local homeomorphism. Let a, b ∈ X, and let γ0, γ1 : [0, 1] → X be paths joining a to
b that are homotopic. There exists a continuous deformation H(t, s) : [0, 1] × [0, 1] → X
such that H(t, 0) = γ0(t), H(t, 1) = γ1(t), H(0, s) = a, and H(1, s) = b.

Let γs(t) = H(t, s). Let a1 ∈ p−1(a), and assume that each γs has a lift γ̃s to y such
that γ̃s(0) = a1. Then γ̃0 and γ̃1 are homotopic and have the same endpoint.2

Proof. Set H̃(t, s) = γ̃s(t) for 0 ≤ t, s ≤ 1. Let us show first that H̃ is continuous. We
claim that there exists some ε0 > 0 such that H̃(t, s) is continuous on [0, ε0] × [0, 1]. We
have H({0} × [0, 1]) = {a}. Let V ⊆ Y,U ⊆ X be neighborhoods of a1 and a such that
p|V : V → U is a homeomorphism. By compactness of [0, 1] and continuity of H, there
exists ε0 > 0 such that H([0, ε0] × [0, 1]) ⊆ U . Let ϕ = (p|V )−1 : U → V . The curve
[0, ε0] 3 t 7→ ϕ(γs(t)) is a lift of γs on [0, ε0], 0 ≤ s ≤ 1, and by the uniqueness of lifts,
ϕ(γs(t)) = γ̃s(t) = H̃(t, s) on 0 ≤ t ≤ ε0. We get the claim.

We now claim that H̃ is continuous on [0, 1]× [0, 1]. Assume that the claim fails, and
let (t0, σ) be a point of discontinuity of H̃. Let τ = inf{t : H̃ is not continuous at (t, σ)}.
Then 0 < ε ≤ τ . Let x = H(τ, σ) and y = (̃τ, σ); that is, t = γ̃σ(t), so y ∈ p−1(x). Let
V,U be neighborhoods of y and x such that p|V : V → U is a homeomorphism, and let
ϕ = (p|V )−1. By continuity of H, there exists ε > 0 such that H(Iε(τ), Iε(σ)) ⊆ U , where
Iε(τ) is a neighborhood of τ and Iε(σ) is a neighborhood of σ. In particular, γσ(Iε(τ)) ⊆ U .
We can also assume that γ̃σ(Iε(τ)) ⊆ V . We get γ̃σ(t) = ϕ(γσ(t)) for t ∈ Iε(τ). Let
t1 ∈ Iε(τ) with t1 < τ . Then H̃ is continuous at (t1, σ), so there is a neighborhood Iδ(σ)
of σ with δ ≤ ε such that H̃(t1, s) ∈ V for s ∈ Iδ(σ). Now t 7→ γ̃s(t) and t 7→ ϕ(γs(t))
for t ∈ Iε(τ) are both lifts of γs(t), and by the uniqueness of lifts, γ̃s(t) = ϕ(γs(t)). In

1This theorem is sometimes called the abstract monodromy theorem.
2Professor Hitrik says “some theorems may not be meant to be discussed in public.” After seeing the

proof of this, you may agree.
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particular, H̃ is continuous in a neighborhood of (τ, σ), which contradicts the definition of
τ . We get that H̃ is continuous on [0, 1]× [0, 1].

We also need to check that s 7→ γs(1) is constant. This is continuous and lifts the
constant path s 7→ b. By the uniqueness of lifts, γ̃s(1) = γ̃0(1) ∈ p−1(b).

4.2 Existence of lifts

Theorem 4.2 (existence of lifts). Let X,Y be Hausdorff spaces, and let p : Y → X be a
covering map. Let Z be a Riemann surface which is simply connected, and let f : Z → X
be continuous. For any x0 ∈ Z and y0 ∈ Y such that f(z0) = p(y0), there is a unique lift
f̃ : Z → Y such that f̃(z0) = y0.

Y

Z X

p
f̃

f

We will prove this next time. First, here are examples.

Example 4.1. Let Y = C and X = C \ {0}. Then p(z) = ez is a covering map. If

f ∈ Hol(Z) is nonvanishing, then there exists a holomorphic lift f̃ such that ef̃ = f .

Example 4.2 (Picard’s little theorem). Let f ∈ Hol(C) and 0, 1 /∈ f(C). Then f :
C \ {0, 1}. We shall show that the disc D covers C \ {0, 1}:

D

C C \ {0, 1}

pf̃

f

Then f̃ : C→ D is constant, as it is bounded and entire. So f is constant.

13



5 Existence of Lifts, Germs, and Analytic Continuation

5.1 Existence of lifts

Theorem 5.1 (existence of lifts). Let X,Y be Hausdorff spaces, and let p : Y → X be a
covering map. Let Z be a Riemann surface which is simply connected, and let f : Z → X
be continuous. For any z0 ∈ Z and y0 ∈ Y such that f(z0) = p(y0), there is a unique lift
f̃ : Z → Y such that f̃(z0) = y0.

Y

Z X

p
f̃

f

Proof. Let z ∈ Z, and let γ be a path in Z connecting z0 to z. Then α : f ◦ γ is a path
in X from f(z0) to f(z). Let α̃ be the unique lift of α starting with α̃(0) = y. Define
f̃(z) = α̃(1). This does not depend on the choice of γ: this follows as Z is simply connected,
using the homotopy lifting lemma. Now p ◦ f̃ = f , so f̃ is a lift of f .

We need to check the continuity of f̃ . Let z ∈ Z, let y = f̃(z), and let V,U be
neighborhoods of y, p(y), respectively such that p|V : V → U is a homeomorphism; y ∈ V
and f(z) ∈ U . f is continuous, so there exists a neighborhood W of z which is path-
connected such that f(W ) ⊆ U . We claim that f̃(W ) ⊆ W ; this will show the continuity
of f̃ . Let z′ ∈ W , and let γ′ be a curve in W from z to z′. Let γ and α = f ◦ γ be as
before. Then α′ = f ◦ γ′ ∈ U , so α̃′ sending t 7→ (p|V )(α′(t)) is a lift of α′ starting at y.
The product curve

α̃ ∗ α̃′(t) =

{
α̃(2t) 0 ≤ t ≤ 1/2

α̃′(2t− 1) 1/2 < t ≤ 1

is a lift of α ∗ α′ = f(γ ∗ γ′). The curve γ ∗ γ′ starts at z0 and ends at z′. By definition,
f̃(z′) = α̃ ∗ α̃′(1) = α̃′(1) ∈ V , where V is a small neighborhood of y = f̃(z).

5.2 Germs of holomorphic functions

Definition 5.1. Let X be a Riemann surface, and let a ∈ X. If f, g are holomorphic near
a, we say that f and g are equivalent if there exists a neighborhood W of a such that
f |W = g|W . The equivalence class of f , denoted by fa is called the germ of f at a. We
let Oa denote the space of holomorphic germs at a.

Remark 5.1. Oa is an algebra (in particular a ring) with no zero divisors.

Let OX =
∐
a∈X Oa. Equip OX with the following topology. Let ω ⊆ X be open, and

let f ∈ Hol(ω). Set N(f, ω) = {fx ∈ Ox : x ∈ ω} ⊆ OX . The class of set N(f, ω) is a
base for a topology on OX , where the open sets are all unions of sets of the form N(f, ω).
If f ′ ∈ Hol(ω′), f ′′ ∈ Hol(ω′′), then N(f ′, ω′) ∩ N(f ′′, ω) = N(f ′, ω) = N(f ′′, ω), where
ω = {x ∈ ω′ ∩ ω′′ : f ′x = f ′′x} is open.

14



Definition 5.2. The topological space OX is called the sheaf of germs of holomorphic
functions on X.

We have the natural map p : OX → X sending fa 7→ a.

Proposition 5.1. p is a local homeomorphism.

Proof. Let fa ∈ OX , and let (f, ω) be a representative of fa. Then p : N(f, ω) → ω is a
homeomorphism.

Remark 5.2. This means that we can given OX the structure of a Riemann surface.
However, this is not a covering map.

Proposition 5.2. The topological space OX is Hausdorff.

Proof. Let fa, gb ∈ OX with fa 6= gb. If a 6= b, there exist representatives (f, ωa), (g, ωb)
with ωa ∩ ωb = ∅ such that N(f, ωa) ∩ N(g, ωb) = ∅. If a = b and fa 6= ga, then
there exists a connected neighborhood ω of a and representatives f(f, ω), (g, ω) such that
N(f, ω) ∩N(g, ω) = ∅ by analytic continuation.

5.3 Analytic continuation

Definition 5.3. Let a ∈ X, fa ∈ Oa, and let γ be a curve in X starting at a. The analytic
continuation of fa along γ is a lift γ̃ : [0, 1]→ OX of γ such that γ̃(0) = fa.

OX

Z X

p
γ̃

γ

We write γ̃(t) = fγ(t) ∈ Oγ(t).

Remark 5.3. The analytic continuation, if it exists, is unique (uniqueness of lifts).

Example 5.1. It is not always possible to find an analytic continuation. Let γ(t) = t for
0 ≤ t ≤ 1, and let f(z) = 1/(1− z) near 0. Then f cannot be analytically continued along
the curve γ.
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6 The Monodromy Theorem and Application to Linear ODE

6.1 The monodromy theorem

Last time, we introduced the notion of analytic continuation. If a ∈ X, and fa ∈ Oa, then
an analytic continuation along some curve γ : [0, 1] → X is a lift γ̃ to the sheaf of germs
such that for all t ∈ [0, 1], γ̃(t) = fγ(t) ∈ Oγ(t), and t 7→ fγ(t) is continuous.

OX

Z X

p
γ̃

γ

That is, for all t0 ∈ [0, 1], there is a neighborhood It0 ⊆ [0, 1] of t0 and an open set ω ⊆ X
such that γ(It0) ⊆ ω, and f̃ ∈ Hol(ω): f̃γ(t) = fγ(t) for all t ∈ It0 .

Theorem 6.1 (monodromy theorem). Let X be a Riemann surface, let a, b ∈ X, and let
γ0, γ1 be homotopic curves from a to b. Let fa ∈ Oa. Let H(t, s) be a homotopy between γ0

and γ1, and assume that fa has an analytic continuation γ̃s along γs(t) = H(t, s) for all s.
Then s 7→ γs(1) ∈ Ob are equal for all s. In particular, γ̃0(1) = γ̃1(1).

Proof. Apply the homotopy lifting theorem to the local homeomorphism p : OX → X.

Corollary 6.1. Let X be a simply connected Riemann surface, and let a ∈ X. Let fa ∈ Oa.
be a holomorphic germ which can be continued along any curve starting at a. Then there
exists a unique globally defined holomorphic function F ∈ Hol(X) such that Fa = fa in Oa.

Proof. When x ∈ X, let γ be a path from a to x, and let fx ∈ Ox be the analytic
continuation of fa along γ (fx is independent of the choice of γ). Define F (x) = fx(x).

6.2 Linear ODE in the complex domain

Here is the historical origin of the idea of monodromy. This will be a good example of the
applications of our theory.

Proposition 6.1. Let Ω ⊆ C be open, and let A ∈ Hol(Ω,Matn×n(C)). Let Ω be simply
connected. Then for all z0 ∈ Ω and x0 ∈ Cn, then Cauchy problem

x′(z) = A(z)x(z), x(z0) = x0

has a unique solution x(z) ∈ Hol(Ω,Cn)

Proof. (idea) Write

x(z) = x0 +

∫
γz0,z

A(ζ)x(ζ) dζ,

and solve the integral equation by Picard’s iterations.
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Assume now that Ω = {0 < |z| < 1} is not simply connected. We have the covering
map eζ : {Re(ζ) < 0} → {0 < |z| < 1}, and we can lift the ODE to {Re(ζ) < 0}. If we let
y(ζ) = z(eζ), then

y′(ζ) = eζA(eζ)︸ ︷︷ ︸
2πi-periodic

y(ζ).

We argue more directly: Let ω ⊆ Ω be a small, simply connected neighborhood of z0 ∈
{0 < |z| < 1}, and let V (ω) = {x(z) ∈ Hol(ω,Cn) : x′(z) = A(z)z(z) in ω}. This
is an n-dimensional vector space. We can continue elements of V (ω) analytically: let
Γ1 = {z ∈ Ω”α < arg(z) < β} with α < 0, β > π, and Γ1 ⊇ ω. Then V (Γ1) is the set
of solutions to the ODE in Γ1. We have the extension map E : V (ω) → V (Γ1). We then
restrict to a domain ω′ on the other side of the disc, extend to another sector Γ2, and
restrict to ω. We get a linear bijective map S : V (ω) → V (ω) called the monodromy
map of this ODE.

Let x1, . . . , xn be a basis for V (ω), and let F (z) =
[
x1(z) · · · xn(z)

]
be the funda-

mental matrix with columns xi. Write

Sxj(z) =
∑
k

Sk,jxk(z).

If we denote x1(ze2πi) = Sxj(z), we get

F (ze2πi) = F (z)A

for z ∈ ω. We claim that there exists a matrix C such that F (z) = Q(z)zC in ω, where
Q(z) ∈ Hol(0 < |z| < 1) and zC = eC log(z). To get the claim, we write S = e2πiC and
check that Q(z) satisfies Q(ze2πi) = Q(z).

6.3 Analytic continuation to larger Riemann surfaces

Let X be a Riemann surface, and let ϕ ∈ Oa for some a ∈ X. We would like to construct
a new Riemann surface which arises by analytic continuation of ϕ.

Definition 6.1. An analytic continuation of ϕ is given by (Y, p, f, b), where Y is a
Riemann surface, p : Y → X is holomorphic with no ramification points, f ∈ Hol(Y ),
b ∈ p−1(a), and fb = p∗(ϕ). Here, p∗ is the pullback map p∗(ϕ) = ϕ ◦ p.
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7 Maximal Analytic Continuation and Analytic Functionals

7.1 Maximal analytic continuation

Let X,Y be Riemann surfaces, and let p : Y → X be holomorphic with no ramification
points. Then p is a local biolomorphism, and the pullback map p∗ : OX,p(y) → Oy sending
f 7→ f ◦ p is an isomorphism with inverse p∗. Let ϕ ∈ OX,a for some a ∈ X.

Definition 7.1. An analytic continuation of ϕ is given by (Y, p, f, b), where p : Y → X
is holomorphic and unramified, f ∈ Hol(Y ), b ∈ p−1(a), and p∗(fb) = ϕ.

Definition 7.2. An analytic continuation is maximal if the following property holds: if
(Z, q, g, c) is another continuation of ϕ, then there exists a holomorphic map F : Z → Y
which is fiber preserving (p ◦ F = q) such that F (c) = b and F ∗f = g.

Theorem 7.1. Let X be a Riemann surface, ϕ ∈ OX,a. Then there exists a maximal
analytic continuation (Y, p, f, b) of ϕ.

Remark 7.1. One can show that this is unique up to holomorphic diffeomorphism, but
we will not do that here.

Lemma 7.1. Let (Y, p, f, b) be an analytic continuation of ϕ. Let γ : [0, 1]→ Y be a path
in Y from b to y ∈ Y . Then the germ ψ = p∗(fy) ∈ OX,p(y) is an analytic continuation of
ϕ along the path p ◦ γ.

Proof. Set ϕt = p∗(fγ(t)) ∈ Ox,p(γ(t)) for all 0 ≤ t ≤ 1. Then ϕ0 = ϕ, and ϕq = ψ.
We need to check that [0, 1] → OX sending t 7→ ϕt is continuous. Let t0 ∈ [0, 1]. Then
there exist neighborhoods V ⊆ Y of γ(t0) and U ⊆ X of p(γ(t0)) such that p|V : V |toU
is a holomorphic bijection. Let g = f ◦ ((p|V )−1) ∈ Hol(U). Then p∗(fz) = gp(z) for all
z ∈ V . We can find a neighborhood It0 of t0 such that γ(It0) ⊆ V . Then for every t ∈ It0 ,
ϕt = gp(γ(t)). Thus, ψ is an analytic continuation of ϕ along p ◦ γ.

Now let’s prove the theorem.

Proof. Let Y be the connected component in OX containing ϕ. Then Y ⊆ OX is open
(since OX is locally connected), and the map p = p|Y is a local homeomorphism Y → X.
There exists a unique complex structure on Y such that p : Y → X is holomorphic. Let
ζ ∈ Y . Then ζ is a germ of a holomorphic function on X at p(ζ). Define f(ζ) = ζ(p(ζ)).
Then f ∈ Hol(Y ), and if b = ϕ, then b ∈ p−1(a) and p∗(fb) = ϕ.

Let us check the maximality of (Y, p, f, b). Let (Z, q, g, c) be an analytic continuation
of ϕ. Let z ∈ Z and z = q(z). The germ q∗(gz) ∈ OX,x arises by analytic continuation of ϕ
along a curve from a to x in X. Thus, there exists a unique ψ ∈ Y such that q∗(gz) = ψ.
We get a map F : Z → Y sending z 7→ ψ, and it follows that (Y, p, f, b) is maximal.
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7.2 Analytic functionals and the Fourier-Laplace transform

Definition 7.3. We say that a linear map µ : Hol(C) → C is an analytic functional if
it is continuous in the following sense: there exist a compact K ⊆ C and constant C > 0
such that |µ(f)| ≤ C supK |f | for all f ∈ Hol(C).

Remark 7.2. By the Hahn-Banach theorem, µ can be extended to a linear continuous
functional on C(K). Then there exists a measure ν on K such that µ(f) =

∫
K f(z) ν(z)

for f ∈ Hol(C).

Example 7.1. Let γ : [0, 1] → C be a C1 path, and define the functional µ(f) =∫
γ f(z) dz =

∫ 1
0 f(γ(t))γ′(t) dt. µ does not change if γ if replaced by a homotopic path. So

the representing measure need not be unique.

Example 7.2. Let µ(f) = f (j)(0) for j ≥ 0 is an analytic functional.

Definition 7.4. A compact set K ⊆ C is called a carrier for the analytic functional µ if
for every open neighborhood ω of K, there is a constant Cω such that |µ(f)| ≤ Cω supω |f |
for f ∈ Hol(C).

Remark 7.3. The first example shows that carriers need not be unique, either.

Definition 7.5. The Fourier-Lapclace transform µ̂ of µ is defined by

µ̂(ζ) = µz(e
zζ), ζ ∈ C.

We have that µ̂ is entire (by its description as integration of this function against a
measure).

Proposition 7.1. The map µ 7→ µ̂ is injective.

Proof. If µ̂(ζ) = 0 for all ζ, then 0 = ∂jζ µ̂|ζ=0 = µ(zj) for all j. In particular, for any
polynomial p, µ(p) = 0. Polynomials are dense in Hol(C), so µ(f) = 0 for all f ∈ Hol(C).
That is, µ(f) = 0.
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8 Inversion of the Fourier-Laplace Transform

8.1 Bounds on analytic functionals

Last time, we were talking about analytic functionals µ : Hol(C) → C. We defined the
Fourier-Laplace transform µ̂(ζ) = µz(e

zζ), z ∈ C. Assume that µ is carried by the compact
set K ⊆ C: for all neighborhoods ω of K,

|µ(f)| ≤ Cω sup
ω
|f |, f ∈ Hol(C).

So there exists a measure ν on ω such that

µ(f) =

∫
ω
f(z) dν(z).

So we get the bound

|µ̂(ζ)| ≤ exp(sup
z∈ω

Re(zζ))

∫
ω
|dν(z)|.

Ir follows that for any δ > 0, there is a constant Cδ such that

|µ̂(ζ)| ≤ Cδ exp(HK(ζ) + δ|ζ|), ζ ∈ C,

where
HK(ζ) = sup

z∈K
Re(zζ)

is the support function of K. HK is a convex, positively homogeneous of ζ ∈ C ∼= R2.
In particular, µ̂ is entire of order 1 and of exponential type:

|µ̂(ζ)| ≤ Cea|ζ|.

Proposition 8.1. Let K be compact and convex with the support function HK . Then
K = {z ∈ C : Re(zζ) ≤ HK(ζ) ∀ζ ∈ C}.

Proof. (⊆): This inclusion is by definition of HK .
(⊇): Let z0 /∈ K. By the geometric Hahn-Banach theorem, there exists a hyperplane

separating K and z0. That is, there exists a real, linear form f on R2 and γ ∈ R such
that f(z) < γ < f(z0) for any z ∈ K. There is a ζ ∈ C such that f(z) = Re(zζ), so
HK(ζ) < Re(z0ζ).

To summarize, if µ is carried by a compact K, then its transformM(ζ) = µ̂(ζ) is entire
and satisfies: for all δ > 0, there exists a Cδ such that

|M(ζ)| ≤ Cδ exp(HK(ζ) + δ|ζ|).
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8.2 Inversion of the Fourier-Laplace transform

Theorem 8.1 (Polya, Ehrenpreis, Martineau3). Let K ⊆ C be compact and convex, and
let M∈ Hol(C) be such that

|M(ζ)| ≤ Cδ exp(HK(ζ) + δ|ζ|).

Then there exists a unique analytic functional µ such that µ̂ =M and µ is carried by K.

Proof. Idea: Construct the analytic functional µ using the Borel transform of M. In
particular, the estimate on M gives

|M(ζ)| ≤ C1e
C|ζ|

for some C1, C. When R > 0, we have

M(j)(0)

j!
=

1

2πi

∫
|ζ|=R

M(ζ)

ζj+1
dζ,

which gives
|M (j)| ≤ j!C1e

CRR−1.

The optimal choice of R is given by R = j/C. So we get

|M(j)(0)| ≤ j!C1e
j

(
C

j

)j
≤ C1(Ce)j , j = 0, 1, 2, . . . .

Define

B(ζ) =
∞∑
j=0

ζ−j−1M(j)(0).

Then B ∈ Hol(Ĉ \ {|ζ| ≤ Ce}), and B(∞) = 0. Then function B is called the Borel
transform of M.

Let χ ∈ C∞0 (C) be such that χ = 1 on a large disc, and define

µ(f) = − 1

π

∫∫
∂χ

∂ζ
(ζ)f(ζ)B(ζ) dλ(ζ),

where λ is Lebesgue measure in C. Then µ is an analytic functional which is independent
of the choice of χ. We claim first that µ̂ =M: compute

µ̂(j)(0) = µ(ζj)

3Polya proved the theorem in complex dimension 1. Ehrenpreis and Martineau generalized it to Cn for
n > 1.
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= − 1

π

∫∫
∂χ

∂ζ
(ζ)ζjB(ζ) dλ(ζ)

=
∞∑
k=0

− 1

π

∫∫
∂χ

∂ζ
(ζ)ζjζ−k−1M(k)(0) dλ(ζ)

When k = j, the summand is

M(j)(0)

(
− 1

π

∫∫
∂χ

∂ζ
(ζ)

1

ζ
dλ(ζ)

)
︸ ︷︷ ︸

=1

by the Cauchy integral formula. When j 6= k, it equals∫∫
∂χ

∂ζ
(ζ)ζν dλ(ζ),

where ν 6= −1. We can choose χ(ζ) = ψ(|ζ|2) (making it radially symmetric to get:∫∫
ψ′(|ζ|2)ζν+1 dλ(ζ) =

∫∫
ψ′(|ζ|2)rν+1eiθ(ν+1)r dr dθ = 0.

We get µ̂(j)(0) =M(j)(0). So µ̂ =M as their Taylor expansions agree.
We claim that B can be continued analyrically to Ĉ\K. We will do this next time.
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9 Polya’s Theorem and Universal Covering Spaces

9.1 Polya’s theorem (cont.)

Last time, we were proving Polya’s theorem. Let’s finish the proof.

Theorem 9.1 (Polya, Ehrenpreis, Martineau). Let K ⊆ C be compact and convex, and
let M∈ Hol(C) be such that

|M(ζ)| ≤ Cδ exp(HK(ζ) + δ|ζ|).

Then there exists a unique analytic functional µ such that µ̂ =M and µ is carried by K.

Proof. Set

µ(f) = − 1

π

∫∫
∂χ

∂ζ
(ζ)fB dλ(ζ),

where χ ∈ C∞0 (C) is 1 on a large disc and B is the Borel transform of M. We claim that
B can be extended analytically to Ĉ \K. First, if the claim holds, µ is carried by K: for
any neighborhood ω of K, we can choose χ ∈ C∞0 (ω) such that χ = 1 in a neighborhood
of K.

Proof of claim: Let w ∈ C with |w| = 1, and let

Bw(ζ) =

∫ ∞
0
M(tw)we−twζ dt.

We have
|M(tw)e−twζ | ≤ Cδ exp(tHK(w) + δt− tRe(wζ)).

Let Πw = {ζ ∈ C : Re(wζ) > HK(w)}. It follows that Bw ∈ Hol(Πw). When ζ ∈ C
is such that wζ is real and � 0, then we can compute Bw(ζ) by expanding M(tw) =∑∞

j=0M(j)(0)(tw)j/j! as a Taylor series and integrating term by term. In general, if
f ∈ Hol(|z| < R) and |f | ≤M , then Cauchy’s estimates give∣∣∣∣∣∣f(z)−

n−1∑
j=0

f (j)(0)

j
zj

∣∣∣∣∣∣ ≤
∞∑
j=n

|f (j)(0)|
j!

|z|j ≤M
(
|z|
R

)n 1

1− |z|/R
,

so integrating the Taylor series term by term is justified.
We get

Bw(ζ) =

∞∑
j=0

M(j)(0)

j!
wj+1

∫ ∞
0

tje−twζ dt︸ ︷︷ ︸
=j!(wζ)−(j+1)

= B(ζ)
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for any w. It follows that for any w1, w2, Bw1 , Bw2 coincide in the region Πw1∩Πw2 , for they
are both equal to B far away. We get a well-defined holomorphic function on

⋃
|w|=1 Πw

which analytically continues B. Now⋃
|w|=1

Πw = {ζ ∈ C : Hk(w) < Re(wζ) for some w} = C \K,

as we checked that K = {ζ : Re(zζ) ≤ HK(z) ∀z ∈ C}.

Remark 9.1. Let µ be an analytic functional. Then there is a compact set K ⊆ C and a
measure ν on K such that

µ(f) =

∫
K
f(z) dν(z).

By Cauchy’s integral formula,

f(z) = − 1

π

∫∫
∂χ

∂ζ
(ζ)

f(ζ)

ζ − z
dλ(s), z ∈ K,

where χ ∈ C∞0 equals 1 in a neighorhood of K. Then

µ(f) = − 1

π

∫∫
∂χ

∂ζ
(ζ)

f(ζ)

ζ − z
ϕ(ζ) dλ(s),

where

ϕ(ζ) =

∫
K

1

ζ − z
dν(z) ∈ Hol(C \K),

and at ∞,

ϕ(ζ) =
∑ 1

ζj+1

(∫
zj dν(z)

)
︸ ︷︷ ︸

=µ(zj)

= B(ζ).

So it is natural to look for this kind of representation of an analytic functional.

9.2 Universal covering spaces

Theorem 9.2. Let X be a connected topological manifold. Then there exists a simply
connected manifold X̃ and a covering map p : X̃ → X.

Remark 9.2. If p̃ : X̃ → X and p̂ : X̂ → X are covering maps and X̃, X̂ are simply
connected, then there is a homeomorphism f : X̃ → X̂ such that p̂ ◦ f = p̃.

Proof. Let x0 ∈ C, and let π(x0, x) be the set of homotopy classes of paths from x0 to
x. Define X̃ = {(x,Γ) : x ∈ X,Γ ∈ π(x0, x)}. Define the following topology on X̃: Let
(x,Γ) ∈ X̃, and let U be a path-connected and simply connected neighborhood of X.
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Define 〈U,Γ〉 = {(y,Γ) : y ∈ U,Λ = [γ ∗ α],Γ = [γ], α from x to y}. Use the sets 〈U,Γ〉 as
a base for a topology on X̃.

Let p : X̃ → X send (x,Γ) 7→ x. We claim that p is a covering map. Let x ∈ X, and
let U be a path-connected and simply connected neighborhood of x. Then

p−1(U) =
⋃

p(x,[σ])=x

〈U, [σ]〉 ,

where σ is a path from x0 to x. If [σ] 6= [τ ], then 〈U, [σ]〉 6= 〈U, [τ ]〉: if (y, [γ]) ∈ 〈U, [σ]〉 ∩
〈U, [τ ]〉, then there are paths α, β in U from x to y such that [γ] = [σ ∗ α] = [τ ∗ β]; α and
β are homotopic, so [σ] = [τ ].

One checks that p is continuous and open. Let us see that p : 〈U, [σ]〉 → U is bijective:

• surjective: U is path-connected. p is injective:

• injective: Suppose (y, [τ ]) = p(y, [γ]). Then there are paths α, β from x to y such
that [τ ] = [σ ∗ α] and [γ] = [σ ∗ β]. α and β are homotopic, so [τ ] = [γ].

We have checked that p : X̃ → X is a covering map.
It remains to show that X̃ is simply connected. We will do this next time.
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10 Simply Connectedness of Universal Covering Spaces and
Green’s Functions

10.1 Simply connectedness of universal covering spaces

Last time, we were proving the existence of universal covering spaces.

Theorem 10.1. Let X be a connected topological manifold. Then there exists a simply
connected manifold X̃ and a covering map p : X̃ → X.

Proof. Let X̃ = {(x, [σ]) : σ is a path in X from x0 to x}. We have shown that p : X̃ → X
sending (x, [σ]) 7→ x is a covering map. We claim that X̃ is simply connected. When
|sigma is a path in X from x0 to x ∈ X, consider the path in X̃: σ′ : [0, 1] → X with
σ′(s) = (σ(s), [t 7→ σ(ts)]) ∈ X̃. Then σ′(0) = (x0, [εx0 ]) (w here εx0 is the constant path
at x0), and σ′(1) = (x, [σ]). Moreover, p ◦ σ′ = σ. So X̃ is path-connected.

Let σ′′ be a closed path in X̃ with σ′′(0) = σ′′(1) = (x0, [εx0 ]). Then σ := p ◦ σ′′ is
a closed path in X starting and ending at x0. The path σ can be lifted to X̃, and by
the uniqueness of lifts, σ′′ sends [0, 1] 3 s 7→ (σ(s), [t 7→ σ(st)]) ∈ X̃. Thus, (x0, [εx0 ]) =
σ′′(0) = σ′′(1) = (x, [σ]), so σ is null-homotopic in X. By the homotopy lifting theorem,
σ′′ is null-homotopic in X̃.

10.2 Green’s functions in C

We want to prove the uniformization theorem:

Theorem 10.2 (Poincaré, Koebe). Let X be a simply connected Riemann surface. Then
X is complex diffeomorphic to Ĉ, C, or the unit disc D ⊆ C.

Here is the starting point of the proof. We will try to construct a Green’s function for
X. Recall the notion of a Green’s function for an open, bounded Ω ⊆ C with C2 boundary.

Definition 10.1. We say that G(x, y) for x ∈ Ω, y ∈ Ω is a Green’s function for Ω if

1. G(x, y) = 1
2π log |x− y|+ hx(y), where hx ∈ C2(Ω) is harmonic in Ω.

2. G(x, y) = 0 for y ∈ ∂Ω.

Remark 10.1. If G exists, it is unique. The function y 7→ G(x, y) is subharmonic in Ω.
By the maximum principle, G(x, y) < 0 for all (x, y) ∈ Ω× Ω.

Assume that G(x, y) exists, and let u ∈ C2(Ω) with u|∂Ω. Cut out a small disc around
x to get Ωε = {y ∈ Ω : |x− y| > ε}. By Green’s formula,∫

Ωε

(u(y)∆yG(x, y)−G(x, y)∆u(y)) =

∫
∂Ωε

(
u(y)

∂G(x, y)

∂ny
−G(x, y)

∂u

∂ny

)
ds(y)
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=
�
�
��7

0∫
∂Ω

+

∫
Sε

,

where n is the unit outgoing vector, normal to ∂Ωε, and Sε = {y : |y − x| = ε}. Consider∫
Sε

− G(x, y)︸ ︷︷ ︸
=O(log(1/ε))

∂u

∂ny
ds(y)︸ ︷︷ ︸
=O(ε)

= O(ε log(1/ε))
ε→0−−−→ 0.

Compute also∫
Sε

u(y)∇y
(

1

2π
log |x− y|+ hx(y)

)
−(y − x)

|y − x|
ds(y)

=

∫
sε

u(y)

(
1

2π

1

|y − x|
y − x
|y − x|

−(y − x)

|y − x|
+O(1)

)
ds(y)

= − 1

2πε

∫
sε

u(y) ds(y) + o(1)

ε→0+−−−−→ −u(x).

The left hand side in Green’s formula equals

−
∫

Ωε

G(x, y)∆u(y) dy →
∫

Ω

ε→0+−−−−→
∫

Ω
−G(x, y)∆u(y) dy,

where we can use the dominated convergence theorem since G ∈ L1
loc(Ω). We get

u(x) =

∫
Ω
G(x, y)f(y) dy

if f = ∆u ∈ C(Ω). Here, we have used that u ∈ C2(Ω) and u|∂Ω = 0.
Assume now that u ∈ C2

0 (R2). Take Ω = D(0, R) for large R > 0, and let x = 0. Then

u(0) =

∫
G(0, y)∆u(y) dy =

∫ (
1

2π
log |y|+ h0(y)

)
∆u(y) dy.

h0 is harmonic in D(0, R), so ∫
h0∆u(y) dy = 0

after integrating by parts. So we get that∫
E(y)∆u(y) dy = u(0), E(y) =

1

2π
log |y|
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for all u ∈ C2
0 (C). When this formula holds, we say that E is a fundamental solution of

∆, and we write ∆E = δ0, where δ0 is the Dirac measure at 0: δ0(u) = u(0).
To construct G(x, y) for a given Ω, we need to solve

∆yhx(y) = 0

in Ω with the boundary condition(
hx +

1

2π
log |x− ·|

)
∂Ω

= 0.

This can be solved using Perron’s method. We will extend Perron’s method to a Riemann
surface and construct a Green’s function using this method.
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11 Weyl’s Lemma and Perron’s Method

11.1 Weyl’s lemma

Last time, we were talking about Green’s functions for Ω ⊆ C:

G(x, y) =
1

2π
log |x− y|+ hx(y), G(x, y) = 0, y ∈ ∂Ω,

where hx is harmonic. If

E(x) =
1

2π
log |x|,

then E is a fundamental solution of ∆: for all ϕ ∈ C∞0 (R2):∫
E∆ϕ = ϕ(0).

Theorem 11.1 (Weyl’s lemma). Let Ω ⊆ C be open, and let u ∈ L1
loc(Ω) be such that∫

u∆ϕdx = 0 ∀ ∈ C∞0 (Ω).

Then there exists a harmonic u1 ∈ C∞(Ω) such that u = u1 a.e. in Ω.

Proof. Let ω ⊆ Ω be open with compact ω ⊆ Ω, and let ψ ∈ C∞0 with ψ = 1 near ω. Let

w(x, y) = ∆y((1− ψ(y))E(x− y)), x ∈ ω, y ∈ Ω.

Then w ∈ C∞, and y 7→ w(x, y) has compact support: for all x ∈ ω,

w(x, y) = (1− ψ(y)) (∆E)(x− y)︸ ︷︷ ︸
=0

+ · · ·︸︷︷︸
has supp ⊆ supp(∇ψ) ⊆ Ω

.

Let v(x) =
∫
u(y)w(x, y) dy ∈ C∞(ω). We claim that for all g ∈ C∞0 (ω), the integral∫

v(x)g(x) dx =
∫
u(x)g(x) dx; this implies that u = v a.e. We have:∫

v(x)g(x) dx =

∫∫
u(y)∆y((1− ψ(y))E(x− y))g(x) dx dy

=

∫
u(y)∆y

(1− ψ(y))

∫
E(x− y)g(x) dx︸ ︷︷ ︸

h(y)

 dy
=

∫
u(y)∆y((1− ψ(y))h(y)) dy
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Here, h(y) =
∫
E(x)g(x+ y) dx ∈ C∞(R2), where E ∈ L1

loc, ψh ∈ C∞0 (Ω).

=

∫
u(y)∆h(y) dy −

∫
u(y)∆(ψh) dy︸ ︷︷ ︸

=0

E is a fundamental solution to the Lapalacian, so ∆h(y) =
∫
E(x)∆g(x+ y) dx = g(y).

=

∫
u(y)y(y) dy.

Remark 11.1. The argument in the proof only uses that E ∈ L1
loc and E ∈ C∞(R2 \{0}).

If we replaced the Laplacian by any other operator with a fundamental solution, the same
proof would work.

11.2 Perron’s method for constructing harmonic functions

Recall Perron’s method for Ω ⊆ C:

Lemma 11.1. Let Ω ⊆ C be open and connected, and let u : Ω→ [−∞,∞) be subharmonic
with u 6≡ −∞. Let D = {|x− a| < R} be such that D ⊆ Ω, and define

uD(x) =

{
u(x) x ∈ Ω \D

1
2πR

∫
|y|=R PR(x− a, y)u(a+ y) ds(y) x ∈ D.

Then uD is subharmonic in Ω, and u ≤ uD.

The function uD is called the Poisson modification of u.

Definition 11.1. Let Ω ⊆ C be open and connected. A continuous Perron family in
Ω is a family F of continuous subharmonic functions u : Ω→ [−∞,∞) such that

1. u, v ∈ F =⇒ max(u, v) ∈ F .

2. If u ∈ F and D is a disc with D ⊆ Ω, then uD ∈ F .

3. For each x ∈ Ω, there is a u ∈ F such that u(x) > −∞.

Theorem 11.2 (Perron’s method). Let F be a continuous Perron family on an open and
connected Ω ⊆ C, and let u = supv∈F v pointwise. Then one of the following statements
holds:

1. u(x) ≡ +∞ for all x ∈ Ω.

2. u is harmonic in Ω.
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Remark 11.2. The proof is of local nature; it uses only local properties if v ∈ F , and the
maximum principle is only used on small discs in Ω.

Let X be a Riemann surface. We claim that Perron’s method works on X.

Definition 11.2. A function u : X → [−∞,∞) is subharmonic (resp. harmonic) if for
every complex chart ϕα : Uα → Vα in some atlas, u◦ϕ−1

α is subharmonic (resp. harmonic)
in Vα.

Definition 11.3. A parametric disc D = DX ⊆ X is a set such that there exists a
complex chart ϕ : U → V such that DX ⊆ U and ϕ(DX) is a Euclidean disc.

Given u ∈ SH(X), define its Poisson modification:

uDX (x) =

{
u(x) x ∈ X \D
h(x) x ∈ D,

where h is a harmonic extension of u|∂D.
The fundamental theorem of Perron’s method is valid on X, so we can construct inte-

grable harmonic functions on X.
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12 Green’s Functions on Riemann Surfaces

12.1 Green’s functions on Riemann surfaces

Let X be a Riemann surface. Take x ∈ X, let z : U → V be a complex chart, and let D
be a parametric disc with x ∈ D and D ⊆ U such that z(x) = 0. Let F be a family of
continuous subharmonic functions X \ {x} → [−∞,∞) such that

1. For every u ∈ F , there is a compact K ( X such that u|X\K = 0.

2. For every u ∈ F , u(y) + log |z(y)| is bounded above for y in a neighborhood of X.

F is a Perron family on X \ {x}.

Remark 12.1. The second condition does not depend on the choice of the parametric
disc.

Set
Gx(y) = sup

u∈F
u(y).

Definition 12.1. If Gx <∞, then we say that the harmonic function Gx on X \ {x} is a
Green’s function for X with pole at x ∈ X.

If Gx ≡ ∞, then we say that Green’s function does not exist. To give an example where
it does exist, first recall the Lindelöf maximal principle:

Theorem 12.1 (Lindelöf maximum principle4). Let Ω ⊆ C be open and bounded, and let
u ∈ SH(Ω) be bounded above. If

lim sup
z→ζ

u(z) ≤M ∀ζ ∈ ∂Ω \ F,

where F is finite, then u ≤M in all of Ω.

Example 12.1. Let X = {|z| < 1}. We claim that when |a| < 1, Green’s function Ga
exists, and

Ga(z) = log

∣∣∣∣1− azz − a

∣∣∣∣ .
Let u ∈ F . Then

u(z)−Ga(z) = u(z) + log

∣∣∣∣ z − a1− az

∣∣∣∣ ,
which is subharmonic on D \ {a}, bounded above, and equals zero on ∂D. By the Lindelöf
maximum principle, u − Ga ≤ 0 on D \ {a}. We also notice that for every ε > 0, the
function max(Ga(z)− ε, 0) ∈ F . The claim follows.

4This name is not completely standard but sometimes appears in the literature.
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Example 12.2. If X = C, then G0 does not exist: consider max(logR/|z|, 0) for large R.

Proposition 12.1. Let x ∈ X, and let z : D → C be a parametric disc with z(x) = 0.
Assume that Gx exists. Then Gx > 0 on X \ {x}, and Gx(y) + log |z(y)| extends to a
harmonic function on D.

Proof. Let

u0(y) =

{
log 1

|z(y)| y ∈ D \ {x}
0 y ∈ X \D.

Then u0 ∈ F . The function u0 is subharmonic on X \ {x}, as max(log(1/|z|), 0) is subhar-
monic on C\{0}. Then u0 ≥ 0, so Gx ≥ 0 on X \{x}, and Gx > 0 on D. By the maximum
principle, Gx > 0 on X \ {x}.

Let u ∈ F . Then u(y) + log |z(y)| is subharmonic in D \ {x} and bounded above. By
the Lindelöff maximum principle,

u(y) + log |z(y)| ≤ sup
∂D

u ≤ sup
∂D

Gx <∞, y ∈ D \ {x}.

So
Gx(y) + log |z(y)| ≤ sup

∂D
Gx, y ∈ D \ {x}.

Also,
Gx(y) + log |z(y)| ≥ u0(y) + log |z(y)| = 0, y ∈ D \ {x}.

It follows that the bounded harmonic function Gx(y) + log |z(y)| extends harmonically to
D (the singularity at x is removable).

Remark 12.2. It follows that Gx(y) > 0 is superharmonic on X. This explains why C
does not admit any Green’s functions; −Gx would be a bounded subharmonic function on
C, but such a function does not exist.

12.2 Uniformization theorem, case 1

Theorem 12.2 (Uniformization, Case 1). Let X be a simply connected Riemann surface.
The following conditions are equivalent:

1. Gx(y) exists for some x ∈ X.

2. Gx(y) exists for all x ∈ X.

3. There exists a holomorphic bijection ϕ : X → {z : |z| < 1}.
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Proof. (3) =⇒ (2): Let ϕ : X → {|z| < 1} be a holomorphic bijection, and let x ∈ X. We
can assume that ϕ(x) = 0 (by composing ϕ with a Möbius transformation). Let v ∈ Fx.
Then v(y) + log |ϕ(y)| is subharmonic on X \ {x}, bounded above, and ≤ 0 far away from
x. By the Lindelöf maximum principle, v(y)+ log |ϕ(y)| ≤ 0 on X \{x}. So Gx = supv∈F v
exists.

(2) =⇒ (1): This is a special case.
(1) =⇒ (3): Assume that Gx exists for some x ∈ X. By the proposition, Gx(y) +

log |z(y)| is harmonic in the parametric disc z : D → {|z| < 1} (where z(x) = 0). Then
there exists f ∈ Hol(D) such that Gx(y) + log |z(y)| = Re(f(y)) for y ∈ D. Let ϕ(y) :=
z(y)e−f(y). Then ϕ(x) = 0, ϕ is holomorphic, and |ϕ(y)| = e−Gx(y) < 1 for all y ∈ D. We
claim that ϕ continues holomorphically to all of X so that this holds globally on X.

We will prove the last part of this case next time.

34



13 The Uniformization Theorem

13.1 Uniformization, Case 1

Let’s finish the proof of the first case of the Uniformization theorem.

Theorem 13.1 (Uniformization, Case 1). Let X be a simply connected Riemann surface.
The following conditions are equivalent:

1. Gx(y) exists for some x ∈ X.

2. Gx(y) exists for all x ∈ X.

3. There exists a holomorphic bijection ϕ : X → {z : |z| < 1}.

Proof. (1) =⇒ (3): Let D ⊆ X be a parametric disc with x ∈ D and z(x) = 0. We
saw last time that there is a ϕD ∈ Hol(D) such that |ϕD(y)| = e−Gx(y) for all y ∈ D. If
D′ ⊆ X is a parametric disc such that x /∈ D, then there exists ϕD′ ∈ Hol(D′) such that
|ϕD′(y)| = e−Gx(y) for all y ∈ D′: G|D′ is harmonic, so Gx = Re(fD′) with fD′ holomorphic,
and we can take ϕD′(y) = e−fD′ (y). On D ∩D′, ϕD/ϕD′ is holomorphic with modulus 1.
So ϕD/ϕD′ = eiθ for some θ.

Let γ be a path in X with γ(0) = x. Then, by compactness, there is a partition
0 = t0 < t1 < · · · < tn = 1 and parametric discs Dj , 1 ≤ j ≤ n, such that γ([tj−1, tj ]) ⊆ Dj .
It follows that ϕD can be continued analytically along all paths in X starting at x. By the
monodromy theorem, there is a globally defined holomorphic function ϕ ∈ Hol(X) such
that |ϕ(y)| = e−Gx(y) for all y ∈ X.

We claim that ϕ is injective. We have that ϕ(x) = 0, and if ϕ(y) = ϕ(y) = ϕ(x) = 0,
then y = x (since Gx is only infinite at x). Let z ∈ X with z 6= x. Then |ϕ(z)| < 1.
Consider

ϕ1(y) =
ϕ(y)− ϕ(z)

1− ϕ(z)ϕ(y)
.

Then ϕ1 ∈ Hol(X), and |ϕ1| < 1. Take v ∈ Fz, the Perron family used to construct Gz.
The function v(y) + log |ϕ1(y)| is subharmonic on X \ {z}, bounded above, and ≤ 0 far
away. By the Lindelöf maximum principle, v(y) + log |ϕ1(y)| ≤ 0 on X \ {z}. So Gz exists,
and Gz(y) + log |ϕ1(y)| < 0. For y = x, we get

Gz(x) ≤ − log |ϕ1(x)| = log |ϕ(z)| = Gx(z).

Switching the roles of x and z, we get5

Gz(x) = Gx(z).

5This symmetry of the Green’s function is actually true in general, but we will not visit that fact now.
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The function Gz(y) + log |ϕ1(y)| ≤ 0 is subharmonic for y 6= z, and when y = x, we have

Gz(x) + log |ϕ1(x)| = Gx(z) + log |ϕ(z)| = 0.

By the maximum principle, we get

Gz(y) = − log |varphi1(y)|, y 6= z.

If ϕ(w) = ϕ(z), then ϕ1(w) = 0. So Gz(w) =∞, which means w = z.
We have that ϕ : X → D = {|z| < 1} is holomorphic and injective. We do not

actually need to prove surjectivity because of the following trick.6 ϕ(X) ⊆ D is open and
simply connected. By the Riemann mapping theorem, there is a holomorphic bijection
ψ : ϕ(X)→ D. So the map ψ ◦ ϕ ∈ Hol(X) works.

Remark 13.1. This is sometimes called the hyperbolic case since D admits a hyperbolic
metric. So we have shown that every simply connected manifold that carries a Green’s
function is conformally equivalent to a space with a hyperbolic metric.

13.2 Uniformization, Case 2

Theorem 13.2 (Uniformization, Case 2). Let X be a simply connected Riemann surface
for which Green’s function does not exist. If X is compact, then there is a holomorphic
bijection X → Ĉ. If X is not compact, there is a holomorphic bijection X → C.

The main idea in the proof is to show the existence of a dipole Green’s function.

Example 13.1. Consider log 1/|z| on the Riemann sphere. This has singularities of op-
posite signs at 0 and ∞.

Lemma 13.1 (existence of a dipole Green’s function). Let X be a Riemann surface, let
x1, x2 ∈ X be distinct, and let zj : Dj → {|z| < 1} for j = 1, 2 be parametric discs such that
zj(xj) = 0, snd D1 ∩ D2 = ∅. Then there is a functio nGx1,x2(y) which is harmonic on
X \ {x1, x2} such that Gx1,x2(y) + log |z1(y)| is harmonic in D1 and Gx1,x2(y)− log |z2(y)|
is harmonic in D2. Furthermore,

sup
y∈X\(D1∪D2)

Gx1,x2(y) <∞.

Assuming this lemma, which we will prove later, we can finish the proof of the Uni-
formization theorem.

6The map is actually surjective, but it would take some more work to prove.
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Proof. Let Gx1,x2 a dipole Green’s function for x1 6= x2 ∈ X. Arguing as in the proof of

Case 1, we see that there is a ϕ ∈ Hol(X, Ĉ) (i.e. a meromorphic function on X) such that

|ϕ(y)| = e−Gx1,x2 (y), y ∈ X.

Then ϕ has a unique zero at x1 at x1 and a unique simple pole at z2.
Assume that ϕ : X → C is injective. Then consider ϕ(X) ⊆ Ĉ, which is simply

connected. If Ĉ \ ϕ(X) contains more than a single point, composing with a Möbius
transformation which sends the point to ∞, we get an injective, holomorphic map from X
to a subset of C. By the Riemann mapping theorem, we get a holomorphic bijection to D;
however, we assumed no Green’s function exists, so we have a contradiction. So we must
either have ϕ(X) = C (after composing with a Möbius transformation) or ϕ(X) = Ĉ.

Next time, we will show that ϕ is injective, to complete the proof.
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14 Uniformization Case 2 and Green’s Functions Away From
a Disc

14.1 Uniformization, Case 2 (cont.)

Last time, we were finishing our proof of the Uniformization theorem.

Theorem 14.1 (Uniformization, Case 2). Let X be a simply connected Riemann surface
for which Green’s function does not exist. If X is compact, then there is a holomorphic
bijection X → Ĉ. If X is not compact, there is a holomorphic bijection X → C.

Proof. If Gx1,x2 is a dipole Green’s function, then there is a ϕ ∈ Hol(X, Ĉ) such that
|ϕ(y)| = e−Gx1,x2 (y), ϕ(x1) = 0, and ϕ(x2) = ∞ (a simple pole). We only need to show
that ϕ is injective on X. Let x0 ∈ X \ {x1, x2}. The dipole Green’s function Gx0,x2(y)

exists, then there is a ϕ0 ∈ Hol(X, Ĉ) such that |ϕ0(y)| = e−Gx0,x2 (y) for y ∈ X. Consider
the function

f(y) =
ϕ(y)− ϕ(x0)

ϕ0(y)
,

which is holomorphic away from x0, x2. The singularities at x0, x2 are removable, so f ∈
Hol(X).

Now
sup

y∈X\(D1∪D2)
<∞ =⇒ |f(y)| ≤ eGx0,x2 (y)(e−Gx1,x2 (y) + C),

so f is bounded away from x0, x1, x2. Since f is holomorphic at these 3 points, f is bounded
on all of X. Say |f(y)| ≤M . Let v ∈ Fx1 be a Perron amily for Gx1 . Then

v(y) + log

∣∣∣∣f(y)− f(x1)

2M

∣∣∣∣ , y ∈ X \ {x1}

by the Lindelöf maximum principle. Since supv∈Fx1 v(y) =∞ for all y, we get f(y) = f(x1)
for all y ∈ X.

We get that

ϕ(y)− ϕ(x0)

ϕ0(y)
=
ϕ(x1)− ϕ(x0)

ϕ0(x1)
= − ϕ(x0)

ϕ0(x1)
/∈ {0,∞}.

In particular, ϕ 6= ϕ(x0) unless ϕ0(y) = 0. This is when y = x0. Thus, ϕ is injective on
X \ {x1, x2} and hence on X.

14.2 Existence of a Green’s function away from a disc

It now remains to prove the existence of a dipole Green’s function. We need the following
fact.
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Theorem 14.2. Let X0 be a Riemann surface, and let D0 ⊆ X0 be a parametric disc. Set
X = X0 \D0. Then for all x ∈ X, a Green’s function Gx(y) on X exists.

Given this construction, we can produce a dipole Green’s function by taking the differ-
ence of Green’s functions Gx1 and Gx2 for x1, x2 /∈ D0. Then we can shrink the size of the
disc to try to get a dipole Green’s function on all of X0.

Proof. Let x ∈ X, and let S ⊆ X be a parametric disc D ⊆ X with x ∈ D ∼= {|z| < 1} and
z(x) = 0. When 0 < r < 1, let rD = {y ∈ D : |z(y)| < r}. Let v ∈ Fx, a Perron family on
X. Then

v(y) + log |z(y)| ≤ sup
∂D

V, y ∈ D, y 6= x

by the Lindelöf maximum principle. In particular,

sup
y∈∂(rD)

v(y) + log(r) ≤ sup
∂D

v.

Idea: We want to solve the Dirichlet problem7 on X \ rD = X0 \ (D0 ∪ rD):

∆u = 0 on X \ rD, u|∂(rD) = 1, u|∂D0 = 0.

We will use Perron’s method. Let F be the collection of us which are subharmonic on
X \ rD, u = 0 far away, and such that

lim sup
y→ζ

u(y) ≤ 1 ∀ζ ∈ ∂(rD),

lim sup
y→α

u(y) ≤ 0 ∀α ∈ ∂D0.

For all u ∈ F , u ≤ 1, so by the Perron theorem,

ω(y) = sup
v∈F

v(y)

is harmonic on X \ rD.
Any point ξ ∈ ∂D0 ∪ ∂(rD) is a regular point for the Dirichlet problem in the sense

that there is a local barrier at ξ: Recall that h is a local barrier at ξ ∈ ∂Ω (where Ω ⊆ C
is open and connected) if

1. h is defined and subharmonic on Ω ∩ V for some neighborhood B of ξ.

2. h(z) < 0 in Ω ∩ V

3. For z ∈ Ω h(z)→ 0 as z → ξ.

7We have not formally defined the Laplacian on a Riemann surface, but this should at least motivate
the rest of the proof.

39



If ∂Ω ∈ C1, then any ξ ∈ ∂Ω is a regular point. By Perron’s theorem, it follows that
ω = sup v extends continuously to ∂(rD)∪ ∂D0. So we have a harmonic ω on X \ rD such
that ω|∂(rD) = 1 and ω|∂D0 = 0. We have that 0 ≤ ω ≤ 1, and by the maximum principle,

0 < ω < 1 on X \ rD.
Let us go back to v ∈ Fx:

sup
y∈∂(rD)

v(y) + log(r) ≤ sup
∂D

v.

Consider the subharmonic function on X \ rD

v −

(
sup
∂(rD)

v

)
ω.

By the maximum principle, this function is ≤ 0. So

v ≤
(

sup
∂D

v

)
w,

which gives us that

sup
∂D

v ≤

(
sup
∂(rD)

v

)
sup
∂D

ω︸ ︷︷ ︸
=1−δ

.

Combining this with our previous bound on v gives

δ sup
∂(rD)

≤ sup
∂(rD)

v − sup
∂D

v,

so
δ sup
∂(rD)

+ log(r) ≤ 0.

We get that

sup
∂(rD)

≤ 1

δ
log

(
1

r

)
, ∀v ∈ Fx

Thus, supv∈F v 6=∞, and Gx exists.

Remark 14.1. The function ω is called the harmonic measure of ∂(rD) in the region
X \ rD.
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15 Existence of a Dipole Green’s Function

15.1 Symmetry of Green’s functions

Proposition 15.1 (symmetry of Green’s functions). Let X be a Riemann surface such
that Gx exists for some x ∈ X. Then Gy exists for any y, and Gx(y) = Gy(x).

We have already proven this when X is simply connected.

Proof. Idea: Let X̃ be a universal covering space of X. On X̃, Gz̃ exists for all z̃ ∈ p−1(x),
where p : X̃ → X is a covering map. So X̃ = D, and

Gz̃(ỹ) = log

∣∣∣∣1− z̃ỹỹ − z̃

∣∣∣∣
is symmetric.

Remark 15.1. It follows that any Riemann surface is second countable (Rado’s theorem).
Take X, and remove a parametric disc. Then the rest of the space has a Green’s function,
so it is covered by a disc, which is second countable.

15.2 Existence of a dipole Green’s function

Theorem 15.1 (existence of a dipole Green’s function). Let X be a Riemann surface, and
let x1 6= x2 ∈ X. Let zj : Dj → {|z| < 1} be parametric discs such that zj(xj) = 0 and D1∩
D2 = ∅. Then there exists a harmonic Gx1,x2 on X \{x1, x2} such that Gx1,x2 + log |z1(y)|
is harmonic in D1, Gx1,x2 + log |z2(y)| is harmonic in D2, and supX\(D1∪D2) |Gx1,x2 | <∞.

Proof. Let D0 ⊆ X be a parametric disc z0 : D0 : {|z| < 1} with z0(x0) = 0 and D0∩Dj =
∅ for j = 1, 2. For 0 < t < 1, let tD0 = {y ∈ D0 : |z0(y)| < t}. Let Xt = X \ tD0. We know
that Green’s function GXt(x1, y) exists for all y ∈ Xt \ {x1} and for all t. Let 0 < r < 1.
Let v ∈ Fx1 , the Perron family on Xt used to construct GXt(x1, y). When y ∈ Xt \ rD1,

v(y) ≤ sup
∂(rD1)

v

by the maximum principle. Taking the sup over all v ∈ Fx1 ,

GXy(x1, y) ≤ sup
∂(rD1)

GXt(x1, y) =: M(t).

On the other hand, we have shown last time that

sup
∂(rD1)

v + log(r) ≤ sup
∂D1

v
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(by applying the maximum principle to v(y) + log |z1(y)| in D1). We get

M(t) + log(r) ≤ sup
∂D1

GXt(x1, y).

Consider the function

ut(y) = M(t)−GXt(x1, y), y ∈ Xt \ rD1

Then ut(y) ≥ 0 and is harmonic. There exists a y0 ∈ ∂D1 such that ut(y0) ≤ log(1/r). We
want to apply Harnack’s principle to ut: Let K ⊆ X1 \rD1 be compact such that D2 ⊆ K1

and ∂D1 ⊆ K. By Harnack’s inequality,

supK ut
infK ut

≤ C(K, r),

where C(K, r) is a geometric constant independent of t. So

ut(y) ≤ C, y ∈ K,

uniformly in t. So

|GXt(x1, y)−GXt(x1, x2)| = |ut(y)− ut(x2)| ≤ 2C.

Similarly,
|GXt(x2, y)−GXt(x2, x1)| ≤ 2C, y ∈ K ′,K ′ ⊇ D1 ∪ ∂D2.

By the symmetry of Green’s functions, GXt(x2, x1) = GXt(x1, x2). So we get

|GXt(x1, y)−GXt(x2, y)| ≤ C

uniformly in t for y ∈ ∂D1 ∪ ∂D2.
We also want uniform control on Gt on Xt \ (D1 ∪ D2): Let v ∈ Fx1 . Then v(y) −

GXt(x2, y) is subharmonic for y ∈ Xt \D1, so

v(y)−GXt(x2, y) ≤ sup
∂D1

(v −GXt(x2, y)) ≤ C

by the maximum principle. So

GXt(x1, y)−GXt(x2, y)︸ ︷︷ ︸
:=Gt(y,x1,x2)

≤ C

on Xt \D1. Similarly,
inf

y∈Xt\D2

Gt = − sup
Xt\D2

−Gt ≥ C,
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so we get
sup

Xt\(D1∪D2)
|Gt| ≤ C,

uniformly in t. In Dj , j = 1, 2, Gt(y, x1, x2) + log |z1(y)| is harmonic in D1. By the
maximum principle applied in D1,

|Gt(y, x1.x2) + log |z1(y)|| ≤ C, y ∈ D1,

uniformly in t. Similarly,

|Gt(y, x1, x2)− log |z2(y)|| ≤ C, y ∈ D2,

uniformly in t.
These three uniform inequalities give us the following: Let K ⊆ X \ {x1, x2, x0} be

compact. By normal families and Rado’s theorem, there exists a sequence tn → 0 and G
harmonic on X \ {x0, x1, x2} such that Gtn → G locally uniformly on X \ {x0, x1, x2}. The
first inequality gives us that G is bounded in D0 \ {x0}; so G extends harmonically to D0.
Similarly,

|G(y) + log |z1(y)| ≤ C in D1 =⇒ G+ log |z1| is harmonic in D1,

|G(y) + log |z2(y)| ≤ C in D2 =⇒ G+ log |z2| is harmonic in D2.

So G is a dipole Green’s function.
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16 Consequences of the Uniformization Theorem

16.1 Deck transformations

We have shown the Uniformization theorem.

Theorem 16.1 (Uniformization). Let X be a simply connected Riemann surface.

1. If Green’s function exists for X, then there is a holomorphic bijection X → D.

2. If X is compact, then X ∼= Ĉ.

3. If X is not compact and if Green’s function does not exist, then X ∼= C.

What does this say about non-simply connected Riemann surfaces?
Let X be a connected topological manifold. Let X̃ be the universal covering space of

X with covering map p : X̃ → X.

Definition 16.1. We say that a homeomorphism ϕ : X̃ → X̃ is a deck transformation
if p ◦ ϕ = p.

Proposition 16.1. The set of deck transformations is a group G which acts transitively on
the fibers: if x̃, ỹ ∈ X̃ such that p(x̃) = p(ỹ), there is a unique ϕ ∈ G such that ϕ(x̃) = ỹ.

Proof. The lifting criterion applied to p gives a unique ϕ : X̃ → X̃ such that p ◦ϕ = p and
ϕ(x̃) = ỹ.

X̃

X̃ X

p

p

ϕ

ϕ is a homeomorphism because there is a continuous map ψ : X̃ → X̃ such that P ◦ ψ̃ = p
and ψ(ỹ) = x̃. So p ◦ ϕ ◦ ψ = p and ϕ(ψ(ỹ)) = ỹ. So ϕ ◦ ψ = 1 by the uniqueness of lifts.
So ϕ is a deck transformation.

Proposition 16.2. The group G acts on X̃ freely: for all ϕ ∈ G with ϕ 6= 1, ϕ has no
fixed points. Also, the orbits Gx̃ = {ϕ(x̃) : ϕ ∈ G} = p−1(p(x̃)) are discrete, as p is a
cover.

Corollary 16.1. The space of orbits X̃/G is naturally identified with X, also topologically
if X̃/G is equipped with the quotient topology: O ⊆ X̃/G is open iff π−1(P ) ⊆ X̃ is open,
where π : X̃ → X̃/G is the quotient map x̃ 7→ Gx̃.
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16.2 Partial classification of Riemann surfaces

Let X be a Riemann surface. Then X̃ is a Riemann surface, and p : X̃ → X is holomorphic.
So every ϕ ∈ G is holomorphic: G ⊆ Aut(X̃) = {holomorphic bijections X̃ → X̃}. We
have X = X̃/G, where by uniformization, X̃ = Ĉ, C, or D.

1. X̃ = Ĉ: We have that G ⊆ Aut(Ĉ) = {σ : σ(z) = az+b
cz+d , ad − bc 6= 0}. Every

σ ∈ Aut(C) has a fixed point, so G = {1}. We get that if X is a Riemann surface
with Ĉ has the universal covering space, X = C.

2. X̃ = C: We have that G ⊆ Aut(C) = {σ : σ(z) = az+ b, a 6= 0, b ∈ C}. The elements
of G have no fixed points, so a = 1. We get that G ⊆ {σ : σ(z) = z + b, b ∈ C},
the complex translations. G acts with discrete orbits, so (by a fact we will not prove
here8) one of the following holds:

(a) G = {1}, so X ∼= C.

(b) G = {σ : σ(z) = z + nγ, n ∈ Z} for some γ ∈ C \ {0}. We have a natural
isomorphism X ∼= C/{z 7→ z + nγ} ∼= C \ {0} via [z] 7→ e2πiz/γ .

(c) G = {σ : σ(z) = nγ+mδ+z, n,m ∈ Z}, where γ, δ ∈ C are linearly independent
over R. In this case, X is isomorphic to the complex torus.

Thus, if X is a Riemann surface with X̃ = C, then X ∼= C, C \ {0}, or a complex
torus.

3. X̃ = D. Then X ∼= D/G, where G ⊆ Aut(D) acts freely. Such subgroups are called
Fuchsian groups. This is the general case.

16.3 Examples of applications

Example 16.1. Let M be a compact Riemann surface, and assume that there is some
f ∈ Hol(C,M) which is non-constant. What can be said about M? Lift f to the universal
covering space:

X̃

C X

p

f

f̃

Then f̃ is non-constant, so M̃ 6= D. If M̃ = Ĉ, then either M ∼= Ĉ or M̃ = C and M ∼= a
torus.

8This fact has nothing to do with Riemann surfaces. We have a discrete group acting on a real vector
space, so the number of generators should be ≤ the dimension of the vector space.
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Theorem 16.2 (Picard’s little theorem). Let f ∈ Hol(C) be such that 0, 1 /∈ f(C). Then
f is constant.

Proof. We can lift f :

D

C C \ {0, 1}

p

f

f̃

By Liouville’s theorem, f̃ is constant. So f is constant.

This is the end of our discussion of Riemann surfaces. If you are interested in learning
more, here are books which have a modern approach to analysis on Riemann surfaces:

• S. Donaldson, Riemann surfaces.

• D. Varolin, Riemann surfaces by way of complex analytic geometry.
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17 Introduction to Several Complex Variables

17.1 Holomorphic functions of several complex variables

Definition 17.1. Let Ω ⊆ Cn be open, and let f : Ω→ C be a function f = f(z1, . . . , zn) =
f(x1, y1, . . . , xn, yn), where zj = xj + yj . We say that f is holomorphic in Ω if f ∈ C1(Ω)
and if for every j, zj 7→ f(z1, . . . , zj , . . . , zn) where it is defined.

Define
∂f

∂zj
=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
for 1 ≤ j ≤ n. Then f is holomorphic if and only if f ∈ C1(Ω) and ∂f

∂zj
= 0 for all j.

Define also
∂f

∂zj
=

1

2

(
∂f

∂xj
+

1

i

∂f

∂yj

)
.

For all f ∈ C1(Ω),

df =

n∑
j=1

∂f

∂zj
dzj︸ ︷︷ ︸

=:∂f

+

n∑
j=1

∂f

∂zj
dzj︸ ︷︷ ︸

=:∂f

.

So f is holomorphic iff ba∂f = 0.

Example 17.1. Let f ∈ L1(Rn) be such that f = 0 for large |x|. Then the Fourier
transform

f̂(ξ) =

∫
f(x)e−ix·ξ dx, ξ ∈ Rn

extends to the entire function

f̂(ζ) =

∫
f(x)e−ix·ζ dx, ζ ∈ Cn,

where x · ζ =
∑

j xjζj (in particular, there are no complex conjugates involved).

Remark 17.1. The space of holomorphic functions, Hol(Ω) is a ring.

17.2 Cauchy’s integral formula in a polydisc

What is the analogue of a disc in Cn? We could try Euclidean balls, but this turns out to
be more complicated.

Definition 17.2. A polydiscD ⊆ Cn si a set of the formD = D1×· · ·×Dn, where each Dj

is an open disc in C. The boundary is ∂D = {z = (z1, . . . , zn) ∈ Cn : ∃j s.t. zj ∈ ∂Dj}.
The distinguished boundary of D is ∂0D = {z ∈ Cn : zj ∈ ∂Dj ∀j}.
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Theorem 17.1 (Cauchy’s integral formula in a polydisc). Let D = D1 × · · ·Dn be a
polydisc, let f ∈ C(D) be such that f is separately holomorphic9 in zj ∈ Dj for all j. Then

f(z) =
1

(2πi)n

∫
∂0D

f(ζ)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · dζn.

(The integral can be defined by parametrizing ∂0D: for Dj = {|zj − αj | < rj}, let ζj(t) =
αj + rje

itj , 0 ≤ tj ≤ 2π.)

Proof. Proceed by induction on n. When n = 1, this is the usual Cauhy’s integral formula.
Suppose the formula holds for n− 1. Write D = D(α1, r1)×D′, where D(α1, r1) ⊆ C and
D′ ⊆ Cn−1. For every z ∈ D(α1, r1),

f(z, z′) =
1

(2πi)n−1

∫
∂0D′

f(z, ζ ′)

(ζ2 − z2) · · · (ζn − zn)
dζ ′.

By Cauchy’s integral formula and the fact that f ∈ C(D),

f(z, ζ ′) =
1

2πi

∫
∂D(α1,r1)

f(ζ, ζ ′)

ζ − z
dζ

=
1

2πi

∫
∂D(α1,r1)

1

ζ − z

[
1

(2πi)n−1

∫
∂0D′

f(z, ζ ′)

(ζ2 − z2) · · · (ζn − zn)
dζ ′
]
dζ

=
1

(2πi)n

∫
∂0D

f(ζ)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · dζn.

The result follows.

Corollary 17.1. Let f satisfy the assumptions in the theorem. Then f ∈ C∞(D), and
therefore, f ∈ Hol(D).

Corollary 17.2. Let Ω ⊆ C be open, and let f ∈ C(Ω) be separately holomorphic. Then
f ∈ Hol(Ω).

Proof. Take a polydisc D with D ⊆ Ω around each point.

17.3 Local uniform convergence of holomorphic functions

Theorem 17.2. Let uk ∈ Hol(Ω) be such that uk → u locally uniformly in Ω. Then
u ∈ Hol(Ω), and for every α, ∂αuk → ∂αu locally uniformly. Here, α = (α1, . . . , αn) ∈ Nn
is a multiindex, and ∂α = ∂α1

z1 · · · ∂
αn
zn .

Proof. Let D be a polydisc with D ⊆ Ω. Then

uk(z) =
1

(2πi)n

∫
∂0D

uk(ζ)

(ζ1 − z1) · · · (ζn − zn)
dζ, z ∈ D.

It follows that u ∈ Hol(Ω), and ∂αuk → ∂αu uniformly in a neighborhood of the center of
D for all α.

9In particular, we are not assuming that f is holomorphic because we do not assume that f ∈ C1.
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17.4 Cauchy’s estimates

Let D ⊆ Cn be a polydisc, let u ∈ C(D) ∩Hol(D), and write

u(z) =
1

(2πi)n

∫
∂0D

u(ζ)

(ζ − z)E
dζ.

Here, when α is a multiindex, write zα = zα1
1 · · · zαnn , and denote E(1, . . . , 1). Also, when

α is a multiindex, denote α! := α1! · · ·αn!. Then for all α,

∂αu(z) =
α!

(2πi)n

∫
∂0D

u(ζ)

(ζ − z)E+α
dζ.

We then have Cauchy’s estimates:

Theorem 17.3 (Cauchy’s estimates). Let D ⊆ Cn be a polydisc centered at 0, and let
u ∈ C(D) ∩Hol(D). Then

|∂αu(0)| ≤ α!
M

rα
, M = sup

∂0D
|u|.

Proof. By taking derivatives in the Cauchy integral formula as above, we get

|∂αu(0)| ≤ α!

(2πi)n
M(2πi)nrE

rEα
= α!

M

rα
.

17.5 Analyticity of holomorphic functions

Theorem 17.4. Let D ⊆ Cn be a polydisc centered at 0, and let f ∈ Hol(D). We have,
with normal convergence in D:

f(z) =
∑
α

∂αf(0)

α!
zα.

Here, normal convergence means that
∑
uj converges normally in Ω (

∑
supK |uj | < ∞)

for all compact K ⊆ Ω.
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18 Analyticity, Maximum Principle, and Hartogs’ Lemma

18.1 Analyticity of holomorphic functions

Last time, we defined holomorphic functions of several complex variables: if Ω ⊆ Cn is
open, then f ∈ Hol(Ω) if f ∈ C1(Ω) and ∂f

∂zj
= 0 for all j.

Theorem 18.1. Let D ⊆ Cn be a polydisc centered at 0, and let f ∈ Hol(D). We have,
with normal convergence in D:

f(z) =
∑
α

∂αf(0)

α!
zα.

Here, normal convergence means that
∑
uj converges normally in Ω (

∑
supK |uj | < ∞)

for all compact K ⊆ Ω.

Proof. Let D′ = {|zj | < r′j} for 1 ≤ j ≤ n, where 0 < r′j < rj (and D = D1 × · · · × Dn,
Dj = {|zj | < rj}). Then, by Cauchy’s integral formula,

f(z) =
1

(2πi)n

∫
∂0D′

f(ζ)

(ζ − z)E dζ, E = (1, . . . , 1
.

If |ζj | = r′j and |zj | ≤ r′′j < r′j , then

1

ζj − zj
=

1

ζj

∞∑
k=0

(
zj
ζj

)k
.

Then
1

(ζ − z)E
=
∑
α∈Nn

zα

ζα+E
, (ζ, z) ∈ ∂0D

′ ×D′

with normal convergence. We get

f(z) =
∑
α

zα
1

(2πi)n

∫
∂0D′

f(ζ)

ζα+E
dζ =

∑
α

zα
∂αf(0)

α!
.

As D′ ⊆ D is arbitrary, the result follows.

Corollary 18.1. Let Ω ⊆ Cn be open and connected. If f ∈ Hol(Ω) and ∂αf(z0) = 0 for
all α ∈ Nn for some z0 ∈ Ω, then f ≡ 0.

Proof. The proof is the same as for the 1-dimensional case.
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18.2 The maximum principle

Theorem 18.2 (maximum principle). Let Ω ⊆ Cn be open and connected. If f ∈ Hol(Ω)
and |f | assumes a local maximum in Ω, then f is constant.

Proof. Let z0 ∈ Ω be such that |f(z0)| ≥ |f(z)| for all z in a neighborhood of z0. Let
r > 0 be such that {|z − z0| < r} ⊆ Ω, and consider ga(τ) = f(z0 + aτ), where a ∈ Cn
with |a| = 1 and |τ | < r. Then ga ∈ Hol(|τ | < r), and |ga| has a local maximum at 0.
So ga(τ) = ga(0) in |τ | < r by the maximum principle for C. Since a is arbitrary, we get
f(z) = f(z0) in |z − z0| < r. By the previous corollary, f = f(z0) in Ω.

18.3 Hartogs’ lemma

We will prove the following theorem.

Theorem 18.3 (Hartogs’ theorem on separately holomorphic functions). Let Ω ⊆ Cn be
open, and let u : Ω→ C be separately holomorphic (holomorphic in each variable zj, when
the other variables are kept fixed). Then u ∈ Hol(Ω).

Remark 18.1. We do not even assume that u is measurable.

Remark 18.2. The corresponding result in the real domain is not true: for

f(x, y) =

{
xy

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0),

x 7→ f(x, y) and y 7→ f(x, y) are real analytic, but f is not continuous at (0, 0) (let alone
differentiable).

Here is our starting point.

Proposition 18.1 (Hartogs’ lemma). Let Ω ⊆ C be open, and let (uj) be subharmonic
in Ω such that for all compact K ⊆ Ω, there exists an MK such that uj(z) ≤ MK for all
z ∈ K and j = 1, 2, . . . . Assume that there is a C <∞ such that for all z ∈ Ω

lim sup
j→∞

uj(z) ≤ C.

Then for every compact set K ⊆ Ω and each ε > 0, there exists an N such that for all
j ≥ N ,

uj(z) ≤ C + ε, z ∈ K.

Proof. Replacing Ω by a relatively compact domain containing K, we can assume that (uj)
is bounded above in Ω or even that uj ≤ 0 in Ω. Given compact K ⊆ Ω, let 0 < r <
dist(K,Ωc)/3 and recall the sub-mean value property:

uj(z) ≤
1

πr2

∫∫
|z−ζ|≤r

uj(ζ) dλ(ζ), z ∈ K.
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By Fatou’s lemma,

lim sup
j→∞

∫∫
|z−ζ|≤r

uj(ζ) dλ(ζ) ≤
∫∫
|z−ζ|≤r

lim sup
j→∞

uj(ζ) dλ(ζ) ≤ Cπr2.

Thus, for all z ∈ K, there exists jz such that if j ≥ jz, then∫∫
|z−ζ|≤r

uj(ζ) dλ(ζ) ≤ πr2(C + ε/2).

We can assume here that C + ε < 0.
Let |z − w| < δ < r. Then

uj(w) ≤ 1

π(r + δ)2

∫∫
|ζ−w|≤r+δ

uj(ζ) dλ(ζ).

Here, {ζ : |ζ − w| ≤ r + δ} ⊇ {ζ : |ζ − z| ≤ r}. So

uj(w) ≤ 1

π(r + δ)2

∫∫
|ζ−z|≤r

uj(ζ) dλ(ζ)︸ ︷︷ ︸
≤πr2(C+ε/2)

≤
(

r

r + δ

)2

(C + ε/2)

for j ≥ jz. Try to take δ = µr for 0 < µ < 1. The right hand side becomes

1

(1 + µ)2
(C + ε/2),

and we can take µ so this is just C + ε. So we can take

µ =

(
C + ε/2

C + ε

)1/2

︸ ︷︷ ︸
>1

−1.

We can cover K by finitely many neighborhoods of the form {|z − w| < δ} for z ∈ K.

Next time, we will prove the following lemma on our road to Hartogs’ theorem.

Lemma 18.1. Let Ω ⊆ Cn be open, and let u be separately holomorphic in Ω. If u is
locally bounded in Ω, then u ∈ C(Ω) (so u ∈ Hol(Ω)).
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19 Hartogs’ Theorem

19.1 Lemmas containing the argument

The goal is to prove the following theorem.

Theorem 19.1 (Hartogs). Let Ω ⊆ Cn be open, and let u : Ω→ C be separately holomor-
phic. Then u ∈ Hol(Ω).

We will break up the proof into a few lemmas.

Lemma 19.1. Let Ω ⊆ Cn be open, and let u be separately holomorphic in Ω. If u is
locally bounded in Ω, then u ∈ C(Ω) (so u ∈ Hol(Ω)).

Proof. Let D be a polydisc with D ⊆ Ω. Write D = D1 ×D′, where D1 is a disc in C and
D′ is a polydisc in Cn−1. The function z1 7→ u(z1, z

′) ∈ Hol(D1). By Cauchy’s integral
formula, ∂z1u(z1, z

′) is bounded when z1 ∈ D′1 ⊆ D1 (compactly contained) and z′ ∈ D′.
It follows that ∂zju is bounded on a relatively compact polydisc ⊆ D; in other words, ∂zju
are locally bounded in Ω. Also, ∂zj = 0 for all j.

It follows that u is continuous. If a ∈ Ω and h ∈ Cn ∼= R2n,

u(a+ h)− u(a) =
2n∑
j=1

u(a+ vj)− u(a+ vj−1), vj = (hj , . . . , hj , 0, . . . , 0).

Now use the mean value theorem.

Induction on n: Now assume that Hartogs’ theorem is already known for functions of
< n complex variables.

Lemma 19.2. Let u : Ω→ C be separately holomorphic, and let D =
∏n
j=1Dj be a closed

polydisc ⊆ Ω with Do 6= ∅. Then there exist discs D′j ⊆ Dj for 1 ≤ j ≤ n − 1 with
nonempty interior such that if D′n = Dn, then u is bounded on D′ =

∏n
j=1D

′
j.

Proof. Let EM = {z′ ∈
∏n−1
j=1 Dj : |u(z′, zn)| ≤ M ∀zn ∈ Dn}. EM is closed: by the

inductive hypothesis, z′ 7→ u(z′, zn) is holomorphic in a neighborhood of
∏n−1
j=1 Dj for each

zn and thus continuous; so

EM =
⋂

zn∈Dn

z′ ∈
n−1∏
j=1

Dj : |u(z′, zn)| ≤M


is an intersection of closed sets. Also,

⋃∞
M=1EM =

∏n−1
j=1 Dj : zn 7→ u(z′, zn) is holomorphic

near Dn for all z′ ∈
∏n−1
j=1 and is thus bounded on Dn: |u(z′, zn)| ≤M for zn ∈ Dn.∏n−1

j=1 Dj is a complete metric space, so by Baire’s theorem, so EM has nonempty

interior for some M . So EM contains a polydisc D′ =
∏n−1
j=1 D

′
j with nonempty interior

such that if D′n = Dn, u is bounded in D′ =
∏n
j=1D

′
j ⊆ D′.
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Lemma 19.3. Let D be a polydisc {|zj − zj | < R : j = 1, . . . , n}. Let u : D → C be
holomorphic in z′ = (z1, . . . , zn−1) for every fixed zn, and assume that u is holomorphic
and bounded in D′ given by |zj − zoj | < r for all 1 ≤ j ≤ n − 1 for some r > 0 and
|zn − zon| < R. Then u ∈ Hol(D).

Proof. We may assume that zo = 0. Take 0 < R1 < R2 < R. Taylor expand z′ 7→ u(z′, zn):

u(z′, zn) =
∑

α′∈Nn−1

aα′(zn)(z′)α
′
, |zj | < R, 1 ≤ j ≤ n− 1, |zn| < R.

We have that

aα′(zn) =
∂α
′
(0, zn)

(α′)!

is holomorphic in |zn| < R. This series converges normally in |zj | < R for 1 ≤ j ≤ n−1. So

aα′(zn)R
|α′|
2 → 0 as |α′| → ∞ for each zn. Now we have that |u| ≤M in D′. By Cauchy’s

estimates in z′, we know that

|aα′(zn)| ≤ M

r|α′|
∀α′.

Consider the sequence of subharmonic (in |zn| < R) functions

ϕα′(zn) =
1

|α′|
log |aα′(zn)|, |α′| = α1 + · · ·αn−1.

Our bound gives us that ϕα′ is uniformly bounded above in |zn| < R. Since aα′(zn)R
|α′|
2 → 0

as |α′| → ∞,
lim sup
|α′|→∞

ϕα′(zn) ≤ log(1/R2)

for all zn. By Hartogs’ lemma on subharmonic functions, if |zn| ≤ Rn, then for any ε > 0,

ϕα′(zn) ≤ log(1/R2) + ε ≤ log(1/R1)

for large |α′|. In other words, for large |α′| and |zn| ≤ R2,

|aα′(zn)|R|α1|
1 ≤ 1.

The series
∑

α′∈Nn−1 aα′(zn)(z′)α converges absolutely for |zn| < R2 and |zj | < R1 (for all
1 ≤ j ≤ n−1) and hence normally in D. So u ∈ Hol(D) as a limit of holomorphic functions
(the partial sums).
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19.2 Proof of the theorem from the lemmas

We can now prove Hartogs’ theorem.

Proof. Let z0 ∈ Ω, and take a closed polydisc {|zj − z0
j | < 2R, 1 ≤ j ≤ n}. Apply the

second lemma to the closed polydisc with |zj−z0
j | ≤ R for 1 ≤ j ≤ n−1 and |zn−z0

n| ≤ 2R.

Then we get a polydisc of the form |zj − ζ0
j | < r for 1 ≤ j ≤ n− 1 and |zn − z0

n| < R with

{|zj − ζ0
j | < r} ⊆ {|zj − z0

j | < R, 1 ≤ j ≤ n− 1} such that u is holomorphic and bounded

there. In particular, |zj − z0
j |. In particular, |ζ0

j − z0
j | < R.

Consider the polydisc D given by |zj − ζ0
j | < R for 1 ≤ j ≤ n − 1 and |zn − z0

n| < R
(closure in Ω): in the polydisc, u is holomorphic in z′ if zn is fixed, and u is holomorphic
and bounded in the polydisc |zj − ζ0

j | < r for j = 1, . . . , n and |zn − z0
n| < R. By the third

lemma, u is holomorphic in D, which is a neighborhood of z0.
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20 Failure of the Riemann Mapping Theorem and Solving
the ∂-Equation

20.1 Failure of the Riemann mapping theorem in several complex vari-
ables

Theorem 20.1 (Poincaré). Let D = {z ∈ C : |z| < 1}, and let D2 = Dz×Dw ⊆ C2 be the
unit bidisc. There is no biholomorphic map D2 → B2 = {(z, w) ∈ C2 : |z|2 + |w|2 < 1},
the unit ball in C2.

Remark 20.1. The Riemann mapping theorem does not hold for domains in Cn for n > 1.

Remark 20.2. Intuition: ∂D2 contains non-constant analytic discs (holomorphic f : D →
∂D2), while ∂B2 does not.

Proof. Assume that there exists a biholomorphic map f : D2 → B2. Write f(z, w) =
(f1(z, w), f2(z, w)). Let w0 ∈ ∂Dw, and let wn ∈ D be such that wn → w0. Then for any
z ∈ D, (z, wn)→ (z, w0) ∈ ∂D2. Then |f(z, wn)| → 1 (here, we only use that f is proper:
for any compact K ⊆ B2, f−1(K) is compact).

On the other hand, we have gn(z) := f(z, wn) ∈ Hol(D,C2) with |gn(z)| ≤ 1. By
normal families, passing to a subsequence, we get gn → g ∈ Hol(D,C2) locally uniformly.
We have |g(z)| = 1 for all z ∈ D.

We claim that g(z) is constant. Write g(z) = (g1(z), g2(z)), where

|g1(z)|2 + |g2(z)|2 = 1 z ∈ D.

Apply ∂z:
(∂zg

1)g1 + (∂zg
2)g2 = 0.

Apply ∂z:
|∂zg1|2 + |∂zg2|2 = 0.

So ∂zg
i = 0, and we get the claim.

Thus, f(z, wn) converges to a constant so that f ′z(z, wn)→ 0. Let z = z0 ∈ D be fixed,
and consider h(w) = f ′z(z0, w) = (h1(w), h2(w)) ∈ Hol(D,C2). Write by Cauchy’s integral
formula:

hj(w) =
1

2πi

∫
|ζ|=r

f j(ζ, w)

(ζ − z0)2
dζ, |z0| < r < 1.

h is bounded in D, so the radial limits limr→1 h(rw0) exist for almost every w0 ∈ ∂D. We
have that h(wn) → 0 if wn → w0 ∈ ∂D. It follows that limr→1 h(rw0) = 0 for almost
every w0 ∈ ∂D, and by the uniqueness theorem, h(w) ≡ 0 for |w| < 1. We get that
f ′z(z, w) = 0 for all (z, w) ∈ D2, so f = f(w). Replacing the role of z and w, we get that
f is constant.
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20.2 Solving the ∂-equation with compactly supported right hand side

Recall that if ϕ ∈ Ck0 (C) with k ≥ 1 and we set

u(z) = − 1

π

∫∫
ϕ(ζ)

ζ − z
L(dζ),

then u ∈ Ck(C), and ∂u
∂z = ϕ.

Remark 20.3. In general, the equation ∂u
∂z = ϕ has no solutions with compact support.

In Cn, when n > 1, the ∂-equation is a system:

∂u

∂zj
= fj , 1 ≤ j ≤ n.

This is an overdetermined system, which cannot be solved unless the right hand side satisfies
the compatibility conditions

∂fj
∂zk

=
∂fk
∂zj

1 ≤ j, k ≤ n.

Remark 20.4. If we view ∂u =
∑n

j=1
∂u
∂zj

dzj as a 1-form and introduce the 1-form f =∑n
j=1 fj dzj , then the system becomes

∂u = f.

If we define the 2-form ∂f =
∑n

j=1 ∂fj ∧ dz, then the compatibility conditions become

∂f = 0:

∂f =
n∑
j=1

(
n∑
k=1

∂fj
∂zk

dzk

)
∧ dzj =

∑
j<k

(
∂fj
∂zk
− ∂fk
∂zj

)
dzk ∧ dzj

Theorem 20.2. Let fj ∈ Ck0 (Cn) for 1 ≤ j ≤ n and n > 1 be such that ∂f = 0. Then the
equation ∂u = f has a solution u ∈ Ck0 (Cn).

Remark 20.5. Such a solution is unique: if u, ũ ∈ Ck0 (Cn), then ∂(u − ũ) = 0. So
u− ũ ∈ Hol(Cn) with compact support. So u = ũ.

Proof. Consider ∂u
∂zj

for 1 ≤ j ≤ n. Define

u(z) = − 1

π

∫∫
C

f1(ζ1, z2, . . . , zn)

ζ1 − z1
L(dζ1) = − 1

π

∫∫
f1(ζ1 + z1, z2, . . . , zn)

ζ1
L(dζ1).

Then u ∈ Ck(Cn), and ∂u
∂z1

= f1.

We will continue the proof next time.
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21 The ∂-Equation, the Hartogs Extension Theorem, and
Regularization of Subharmonic Functions

21.1 Compactly supported solutions of the ∂-equation

Theorem 21.1. Let fj ∈ Ck0 (Cn) for 1 ≤ j ≤ n and n > 1 be such that ∂f = 0. Then the
equation ∂u = f has a unique solution u ∈ Ck0 (Cn).

Proof. Consider ∂u
∂zj

for 1 ≤ j ≤ n. Define

u(z) = − 1

π

∫∫
C

f1(ζ1, z2, . . . , zn)

ζ1 − z1
L(dζ1).

Then u ∈ Ck(Cn), and ∂u
∂z1

= f1. When j > 1, we have by the compatibility conditions
that

∂u

∂zj
= − 1

π

∫∫ ∂f1
∂zj

(ζ1, z2, . . . , zn)

ζ − z1
L(dζ1) =

1

π

∫∫ ∂f1
∂z1

(ζ1, z2, . . . , zn)

ζ − z1
L(dζ1) = fj(z),

using Cauchy’s integral formula.
We claim that if n > 1, then u is compactly supported: If |z1|+· · ·+|zn| is large enough,

then u(z) = 0. On the other hand, ∂u = 0 on Cn\K, where K =
⋃n
i=1 supp(fi) is compact.

u ∈ Hol(Cn \K), and if Ω is the unbounded component, then, as u(z) = 0 on some open
set in Ω, u = 0 in Ω by the uniqueness of analytic continuation. So supp(u) ⊆ K ∪

⋃
M,

where M is a bounded component of Cn \K. This is bounded, so u ∈ Ck0 (Cn).

21.2 The Hartogs extension theorem

Theorem 21.2 (Hartogs extension theorem). Let |Omega ⊆ Cn be open with n > 1, and
let K ⊆ Ω be compact with Ω \K. Let u ∈ Hol(Ω \K). Then there exists a U ∈ Hol(Ω)
such that U = u in Ω \K.

Proof. Let ϕ ∈ C∞0 (Ω) such that ϕ = 1 in a neighborhood of K. Then let u0 = (1−ϕ)u ∈
C∞(Ω). We shall construct a holomorphic extension U of u such that U = u0 − v, where
we need v ∈ C∞(Ω) and ∂U = 0. We need

0 = ∂U

= ∂u− ∂v
= ∂((1− ϕ)u)− ∂v
= (∂(1− ϕ))u− ∂v
= −(∂ϕ)u+ ∂v
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with compact support ⊆ Ω, away from K. Here, we have used that u ∈ Hol(Ω \K). We
have that (∂ϕ)u ∈ C∞0 (Cn;Cn). Solve:

∂v = −(∂ϕ)u.

The compatibility conditions are satisfied:

∂zk

(
∂ϕ

∂zj
u

)
= ∂zj

(
∂ϕ

∂zk
u

)
∀j, k.

So there exists a v ∈ C∞0 (Cn) solving this, and supp(∂v) ⊆ supp(ϕ). So v = 0 on the
unbounded component O of Cn \ supp(ϕ). We get U −u0−v = (1−ϕ)u−v ∈ Hol(Ω), and
U = u on O ∩ (Ω \ suppϕ)), which is an open subset of Ω \K. This is nonempty because
∂O ⊆ supp(ϕ), so since Ω \K is connected, U = u in Ω \K.

The following special case is of note:

Corollary 21.1. Let f ∈ Hol(Cn) with n > 1. Then f cannot have an isolated zero.

Proof. If f(0) = 0 and f 6= 0 on 0 < |z| < R, then apply the Hartogs extension theorem
to K = {0} and Ω = {|z| < R}.Then h = 1/f ∈ Hol(Ω \K), os there exists a extension
U ∈ Hol(|z| < R). Then fU = 1, which is a contradiction.

21.3 Regularization of subharmonic functions

Let Ω ⊆ C be open and connected. Let u ∈ SH(Ω) with u 6≡ −∞. Then u ∈ L1
loc(Ω). Let

0 ≤ ϕ ∈ C∞0 (C) be such that supp(ϕ) ⊆ {|z| < 1} and
∫
ϕ(z)L(dz) = 1, where ϕ depends

only on |z|.

Remark 21.1. We can take

ϕ(z) = Ch(1− |z|2), h(t) =

{
e−1/t t > 0

0 t ≤ 0.

You can check that h(j)(0) = 0 for all j, so h ∈ C∞(R).

Define

uε = u ∗ ϕε, ϕε(z) =
1

ε2
ϕ
(z
ε

)
,

so

uε(z) =

∫
u(z − ζ)ϕε(ζ)L(dζ), z ∈ Ωε = {z ∈ Ω : dist(z,Ωc) > ε}.

Proposition 21.1. uε ∈ (C∞ ∩ SH)(Ωε), and uε ↓ u as ε ↓ 0.

59



Proof. We have

uε(z) =
1

ε2

∫
u(ζ)ϕ

(
z − ζ
ε

)
L(dζ) ∈ C∞(Ωε).

Check the sub-mean value inequality: First write

uε(z) =

∫
u(z − εζ)ϕ(ζ)L(dζ).

If z ∈ Ωε and r is small, then since u is subharmonic,

1

2π

∫ 2π

0
uε(z + reit) dt =

1

2π

∫ 2π

0

∫
u(z + reit − εζ)ϕ(ζ)L(dζ) dt

≥
∫
u(z − εζ)ϕ(ζ)L(dζ)

= uε(z).

To show that uε(z) ≥ u(z), we have

uε(z) =

∫
u(z + εζ)ϕ(ζ)L(dζ)

=

∫ ∞
0

(∫ 2π

0
u(z + εreit) dt

)
︸ ︷︷ ︸

≥2πu(z)

ϕ(r)r dr

≥
(

2π

∫ ∞
0

ϕ(r)r dr

)
︸ ︷︷ ︸

=1

u(z).

We will finish the proof next time.
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22 Regularization of Subharmonic Functions and L2 Esti-
mates for the ∂ Operator

22.1 Regularization of subharmonic functions

Let u ∈ SH(Ω) be u 6≡ −∞. Let 0 ≤ ϕ∈C∞0 (C) be such that ϕ = 0 for |z| ≥ 1, ϕ is radially
symmetric, and

∫
ϕ = 1. Define

uε = u ∗ ϕε =

∫
u(z − ζ)ϕε(ζ)L(dζ), ϕε(z) =

1

ε2
ϕ
(z
ε

)
,

and let Ωε = {z ∈ Ω : dist(z,Ωc) > ε},

Proposition 22.1. uε ∈ (C∞ ∩ SH)(Ωε), and uε ↓ u as ε ↓ 0.

Proof. We have already shown the first statement, and we have shown that uε ≥ 0 for all
ε > 0.

We want to check that uε ↓ u as ε ↓ 0. As ϕ is radially symmetric, we have

uε(z) =

∫
ϕ(r)r

(∫ 2π

0
u(z + εreit) dt

)
︸ ︷︷ ︸

increasing with ε

dr.

We get that limε→0 uε ∈ SH(Ω) and is ≥ u. On the other hand, by Fatou’s lemma,

lim sup
ε→0

∫
u(z + εζ)ϕ(ζ)L(dζ) ≤

∫
lim sup
ε→0

u(z + εζ)ϕ(ζ)L(dζ) ≤ u(z)

by the upper semicontinuity of u. So uε ↓ u.

Remark 22.1. Regularization arguments show the following: if u ∈ SH(Ω), where u 6≡ −∞
and Ω is connected, then∫

u∆ϕL(ds) ≥ 0 ∀0 ≤ ϕ ∈ C∞0 (Ω).

Conversely, assume that U ∈ L1
loc(Ω) such that∫

U∆ϕL(dζ) ≥ 0.

Then there exists a unique u ∈ SH(Ω) such that u = U a.e.
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22.2 L2 estimates for the ∂ operator

Let Ω ⊆ C be open. Consider the Cauchy-Riemann equation

∂u

∂z
= f.

Recall thatif f ∈ C∞(Ω), there exists some u ∈ C∞(Ω) solving this equation. We want to
solve the equation with f ∈ L2

loc(Ω) and get estimates for the solution.

Definition 22.1. Let f ∈ L2
loc(Ω). We say that u ∈ L2

loc is a solution in the weak sense
of the Cauchy-Riemann equation if for all η ∈ C∞0 (Ω),

−
∫
u∂zβ L(dz) =

∫
fβ L(dz).

Theorem 22.1 (Hörmander10). Let Ω ⊆ C be open, and let ϕ ∈ C∞(Ω) be strictly sub-
harmonic: ∆ϕ > 0 in Ω. Then, for any f ∈ L2

loc(Ω) such that∫
|f |2

ϕ′′z,z
e−ϕ L(dz) <∞,

there exists a weak solution u ∈ L2
loc(Ω) to ∂u

∂z = f such that∫
Ω
|u|2e−ϕ L(dz) ≤

∫
Ω

|f |2

ϕ′′z,z
e−ϕ L(dz).

Proof. We shall work in the Hilbert space

L2
ϕ = L2(Ω, e−ϕ) =

{
f : Ω→ C measurable | ‖f‖L2

ϕ
:=

∫
|f |e−ϕ L(dz) <∞

}
.

Consider the linear operator T : L2
ϕ → L2

ϕ given by Tu = ∂u
∂z equipped with the domain

D(T ) =

{
u ∈ L2

ϕ : ∃f ∈ L2
ϕ s.t. f =

∂u

∂z
weakly: −

∫
u∂zβ =

∫
fβ ∀β ∈ C∞0 (Ω)

}
.

Then D(T ) is dense in L2
ϕ, and Tu = f .

We have the adjoint T ∗ =: ∂
∗
ϕ of T :〈

∂, β
〉
L2
ϕ

= 〈u, ∂∗ϕβ〉L2
ϕ

∀u ∈ D(T ), β ∈ C∞0 (Ω).

10This result, unlike the other results we have been proving, is fairly recent. It was proven in 1965.
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Compute ∂
∗
ϕ:

〈∂u, β〉L2
ϕ

=

∫
∂uβe−ϕ︸ ︷︷ ︸
∈C∞0

L(dz) = −
∫
u∂z(βe

−ϕ)L(dz) =

∫
u∂
∗
ϕβe

−ϕ L(dz).

We get that
∂
∗
ϕβ = −eϕ∂z(βe−ϕ) = −∂zβ + (∂zϕ)β.

The idea is that to get a solvability result for ∂ acting on L2
ϕ, we need an a priori

estimate for ∂
∗
ϕ.

Before we continue with the proof, we need the following proposition:

Proposition 22.2. Let f ∈ L2
loc(Ω), and let C > 0 be constant. Then there exists a

u ∈ L2
loc(Ω) such that ∂u = f and

∫
|u|2e−ϕ L(dz) ≤ C if and only if∣∣∣∣∫ fβe−ϕ L(dz)

∣∣∣∣ ≤ C ∫ |∂∗ϕβ|2e−ϕ L(dz) ∀β ∈ C∞0 (Ω).

Proof. ( =⇒ ): We have by Cauchy-Schwarz that∣∣∣∣∫ fβe−ϕ L(dz)

∣∣∣∣ =

∣∣∣∣∫ ∂uβe−ϕ L(dz)

∣∣∣∣ = |〈u, ∂∗ϕβ〉L2
ϕ
| ≤ C1/2‖∂∗ϕβ‖L2

ϕ
.

(⇐= ): Assume that the bound holds. The linear functional

F (∂
∗
ϕβ) =

∫
fβe−ϕ L(dz).

is well-defined on ∂
∗
ϕC
∞
0 (Ω) ⊆ L2

ϕ, and |F (∂
∗
ϕβ)| ≤ C1/2‖∂∗ϕβ‖L2

ϕ
. So its norm is ≤ C1/2.

By the Hahn-Banach theorem, F extends to all of L2
ϕ. So there is a u ∈ L2

ϕ representing
the linear functional F .
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23 Hömander’s Theorem for Solving the ∂-Equation in One
Variable

23.1 Completion of the proof of Hömander’s theorem

We want to solve ∂u = f on Ω ⊆ C. Last time, we were proving the following observation:

Proposition 23.1. Let f ∈ L2
loc(Ω), and let C > 0 be constant. Then there exists a

u ∈ L2
loc(Ω) such that ∂u = f and

∫
|u|2e−ϕ L(dz) ≤ C if and only if∣∣∣∣∫ fβe−ϕ L(dz)

∣∣∣∣ ≤ C ∫ |∂∗ϕβ|2e−ϕ L(dz) ∀β ∈ C∞0 (Ω).

Proof. ( ⇐= ): Consider the linear map F : ∂
∗
ϕC
∞
0 (Ω) → C given byF (∂

∗
ϕβ) =

∫
fβe−ϕ.

Then
|F (∂

∗
ϕβ)| ≤ C1/2‖∂∗ϕβ‖L2 ,

By the Hahn-Banach theorem, F extends to a linear continuous map on L2
ϕ with the norm

≤ C1.2. Thus, there exists a u ∈ L2
ϕ with ‖u‖L2

ϕ
≤ C1/2 such that F (g) = 〈g, h〉L2

ϕ
for all

g ∈ L2ϕ. In particular, if g = ∂
∗
ϕβ,∫

fβe−ϕ = 〈∂∗ϕβ, u〉L2
ϕ

∀β ∈ C∞0 .

We get ∫
f βe−ϕ = −

∫
u∂z(e

−ϕβ).

for all β. So we get that ∂u = f weakly.

We can now complete the proof of Hörmander’s theorem.

Theorem 23.1 (Hörmander11). Let Ω ⊆ C be open, and let ϕ ∈ C∞(Ω) be strictly sub-
harmonic: ∆ϕ > 0 in Ω. Then, for any f ∈ L2

loc(Ω) such that∫
|f |2

ϕ′′z,z
e−ϕ L(dz) <∞,

there exists a weak solution u ∈ L2
loc(Ω) to ∂u

∂z = f such that∫
Ω
|u|2e−ϕ L(dz) ≤

∫
Ω

|f |2

ϕ′′z,z
e−ϕ L(dz).

11This result, unlike the other results we have been proving, is fairly recent. It was proven in 1965.
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Proof. We need to show that∣∣∣∣∫ fβe−ϕ
∣∣∣∣2 ≤ C‖∂∗ϕβ‖2L2

ϕ
∀β ∈ C∞0 .

We need a lower bound for ‖∂∗ϕβ‖2L2
ϕ
:

In general, let H be a Hilbert space, and let T ∈ L(H,H). Then

‖T ∗x‖2 ≥ ‖T ∗x‖2 − ‖Tx‖2 = 〈T ∗x, T ∗x〉 − 〈Tx, Tx〉
= 〈TT ∗x, x〉 − 〈T ∗Tx, x〉
= 〈[T, T ∗]x, x〉 ,

where [T, T ∗] = TT ∗ − T ∗T is the commutator of T, T ∗. In our case, H = L2
ϕ, T = ∂, and

T ∗ = ∂
∗
ϕ = −∂z + ∂zϕ. So The commutator is

[∂, ∂
∗
ϕ] = [∂,−∂ + ∂ϕ] =��

�*0
[∂, ∂] + [∂, ∂ϕ].

Compute for β ∈ C∞0 :

[∂, ∂ϕ]β = ∂(∂ϕβ)− ∂ϕ∂β = (∂∂ϕ)︸ ︷︷ ︸
∆ϕ/4>0

β.

We get that

‖∂∗ϕβ‖2L2
ϕ
≥ 1

4

∫
∆ϕ|β|2e−ϕ ∀β ∈ C∞0 (Ω).

It follows by Cuachy-Schwarz in L2
ϕ that∣∣∣∣∫ fβe−ϕ

∣∣∣∣ ≤ (∫ |f |2∆ϕ
e−ϕ

)(∫
∆ϕ|β|2e−ϕ

)
︸ ︷︷ ︸

≤4‖∂∗ϕβ‖2L2
ϕ

.

Finally, we get that there exists some u ∈ L2
ϕ such that ∂u = f and

‖u‖2L2
ϕ
≤ 4

∫
|f |2

∆ϕ
e−ϕ.

Remark 23.1. ∂
∗
ϕC
∞
0 (Ω) ⊆ L2

ϕ: we obtain u ∈ ∂∗ϕC∞0 (Ω) such that if h ∈ ker(∂)∩L2
ϕ (i.e.

h is holomorphic), then

0 =
〈
∂h, β

〉
= 〈h, ∂∗ϕβ〉L2

ϕ
∀β ∈ C∞0 .

So u ⊥ ker(∂) ∩ L2
ϕ. Thus, we have found a solution of ∂u = f of minimal norm in L2

ϕ.
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23.2 Weakening the assumptions of Hörmander’s theorem

Assume that ϕ ∈ C∞(Ω) is just subharmonic: ∆ϕ ≥ 0. Apply Hörmander’s theorem to

ψ(z) = ϕ(z) + a log(1 + |z|2), a > 0.

We can estimate (setting r = |z|):

∆ψ(z) ≥ a ∆ log(1 + |z|2)︸ ︷︷ ︸
=(∂2r+ 1

r
∂r)(log(1+r2)))

=
4

(1 + r2)2
.

We get that ∂u = f has a solution u ∈ L2
loc such that

a

∫
Ω
|u|2e−ϕ(1 + |z|2)−a ≤

∫
|f |2e−ϕ(1 + |z|2)2−a

for all subharmonic ϕ ∈ C∞.
It turns out that the same estimate is valid for any subharmonic function, not just ones

in C∞.

Theorem 23.2. Let Ω ⊆ C be open and connected, and let ϕ ∈ SH(Ω) with ϕ 6≡ −∞. Let
a > 0, and assume that f ∈ L2

loc is such that∫
|f |2e−ϕ(1 + |z|2)2−a <∞.

Then there exists a u solving ∂u = f such that

a

∫
Ω
|u|2e−ϕ(1 + |z|2)−a ≤

∫
|f |2e−ϕ(1 + |z|2)2−a.

We will prove this next time.

Remark 23.2. Let f ∈ L2
loc(Ω). Then there is a u ∈ L2

loc(Ω) solving ∂u = f : there exists
a ϕ ∈ C(Ω) ∩ SH(Ω) such that f ∈ L2(Ω, eϕ) (that is,

∫
|f |2e−ϕ <∞: for Ω 6= C, take

ϕ0(z) = − log(dist(z,Ωc)),

which is subharmonic in Ω with the property that ϕ0(z)→∞ as z → ∂Ω. Composing ϕ0

with a suitable convex increasing function, we get ϕ such that the bound holds.
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24 General Hörmander’s Theorem and Application to In-
terpolation by Holomorphic Functions

24.1 Hörmander’s theorem for arbitrary subharmonic functions

Theorem 24.1. Let Ω ⊆ C be open and connected, and let ϕ ∈ SH(Ω) with ϕ 6≡ −∞. Let
a > 0, and assume that f ∈ L2

loc is such that∫
|f |2e−ϕ(1 + |z|2)2−a <∞.

Then there exists a u solving ∂u = f such that

a

∫
Ω
|u|2e−ϕ(1 + |z|2)−a ≤

∫
|f |2e−ϕ(1 + |z|2)2−a.

Proof. This estimate has been proved if ϕ ∈ C∞. In general, let Ωj ⊆ Ω be open, relatively
compact, and increasing to Ω, and let ϕj ∈ C∞(Ωj) ∩ SH(Ωj) such that ϕj ↓ ϕ. Then∫

Ω
|f |2e−ϕj (1 + |z|2)2−a ≤

∫
Ω
|f |2e−ϕ(1 + |z|2)2−a ≤ C ∀j.

We get that there exists some uj solving ∂uj = f in Ωj such that∫
Ωj

|uj |2e−ϕj (1 + |z|2)−a ≤ C, j = 1, 2, . . . .

Let j be fixed, and consider (uj)
∞
j=k on Ωk:∫

Ωk

|uj |2e−ϕk(1 + |z|2)−a ≤
∫

Ωj

|uj |2e−ϕj (1 + |z|2)−a ≤ C.

So (uj)
∞
j=k is bounded in L2(Ωk, e

−ϕk).
Extracting a weakly convergent subsequence and using a diagonal argument, we get a

subsequence (ujν ) and u ∈ L2
loc(Ω) such that ujν → u weakly in L2(Ωk, e

−ϕk) for all k.
Then ∂u = f in Ω: for any β ∈ C∞0 (Ωk),

∫
ujνβ →

∫
uβ, so ∂ujν = f on Ωk for large ν.

We have −
∫
ujν∂β =

∫
fβ and thus ∂u = f on ΩK .

To get the bound for u, recall that if H is a Hilbert space and xj → x weakly in H,
then ‖x‖ ≤ lim infj ‖xj‖. We get that for any k,

a

∫
Ωk

|u|2e−ϕk(1 + |z|2)−a ≤ lim inf
ν→∞

∫
Ωk

|ujν |2e−ϕk(1 + |z|2)−a

≤
∫

Ω
|f |2e−ϕ(1 + |z|2)2−a.

Let k →∞ and use the monotone convergence theorem to get∫
Ω
|u|2e−ϕ(1 + |z|2)−a ≤

∫
Ω
|f |2e−ϕ(1 + |z|2)2−a.
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24.2 Application: Interpolation by holomorphic functions

Here is an application of Hörmander’s theorem.

Proposition 24.1. Let (bk)
∞
k=−∞ be a bounded sequence in C. There exists an h ∈ Hol(C)

with suitable growth properties such that h(k) = bk for every k ∈ Z.

Proof. Let us first find a C∞ solution: let ψ ∈ C∞0 (C) be such that

ψ(z) =

{
1 |z| ≤ 1/4

0 |z| ≥ 1/3.

Then g(z) =
∑

k∈Z bkψ(z − k) is locally finite and solves the problem. We have g ∈
(C∞∩L∞)(C). Try to construct h ∈ Hol(C) in the form h = g−u, where 0 = ∂h = ∂g−∂u.
The function h will only satisfy the equation in the weak sense, but by Weyl’s lemma
(proved on homework last quarter), this will give h ∈ Hol(C) since h ∈ C∞.

We will also need u|Z = 0. Solve ∂u = ∂g. If we can solve this equation, then since
∂g ∈ C∞, we get that u ∈ C∞(C) by Weyl’s lemma. By Hörmander’s theorem for any
ϕ ∈ SH(C), there is a solution u such that

a

∫
|u|2e−ϕ(1 + |z|2)−a ≤

∫
|∂g|2e−ϕ(1 + |z|2)2−a <∞.

Idea (due to Bombieri12): choose ϕ such that ϕ|Z = −∞ and e−ϕ /∈ L1 near z = k for all
k, while the right hand side is finite. This will imply that u(k) = 0 for all k ∈ Z. Try:

ϕ(z) = 2 log | sin(πz)|+ log(1 + |z|2).

Then

e−ϕ ∼ 1

|z − k|2
/∈ L1 near z = k

Also take a = 2. Check that the right hand side equals∫
|∂g|2 1

| sin(πz)|2
1

1 + |z|2
L(dz).

Since ∂g =
∑
bk∂ψ(z − k), 1/| sin(πz)| is bounded on the support of ∂g.

We get that h = g − u, which is a holoorphic solution of h(k) = bk such that∫
|u(z)|2 1

| sin(πz)|2
1

(1 + |z|2)3
<∞.

Since g ∈ L∞, we also get∫
| Im(z)|≥1

|h|2 1

| sin(πz)|2
1

(1 + |z|2)3
<∞.

12This idea came some time after Hörmander’s theorem. It was originally for the several complex variable
case, but we can use it in this case with no issue.
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24.3 Plurisubharmonic functions

We want to prove L2 estimates for the ∂ problem in the case of several complex variables.
We need to first say what the analogue of a subharmonic function is.

Definition 24.1. Let Ω ⊆ Cn be open. A function u : Ω→ [−∞,∞) is called plurisub-
harmonic if

1. u is upper semicontinuous

2. for all z ∈ Ω and w ∈ Cn, the function τ 7→ u(z + τw) is subharmonic where it is
defined.
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25 Plurisubharmonic Functions and the ∂ Problem in Sev-
eral Complex Variables

25.1 Properties of plurisubharmonic functions

Let Ω ⊆ Cn be open. Last time, we said that u : Ω→ [−∞,∞) is plurisubharmonic if

1. u is upper semicontinuous

2. for al z ∈ Ω and w ∈ C, C 3 τ → u(z + τw) is subharmonic.

Example 25.1. Let f ∈ Hol(Ω) for an open Ω ⊆ Cn. Then log |f | and |f |a are plirisub-
harmonic for a > 0.

Proposition 25.1. Let u ∈ C2(Ω) be real. Then u is plurisubharmonic if and only if for
any z ∈ Ω and w ∈ Cn,

n∑
j,k=1

∂2u

∂zj∂zk
(z)wjwk ≥ 0.

Proof. We have that u is plurisubharmonic iff ∆τ (u(z + τw)) ≥ 0:

∂τ (u(z + τw)) =
n∑
j=1

∂u

∂zj
(z + τw)wj .

∂τ (∂τ (u(z + τw))) =
n∑

j,k=1

∂2u

∂zj∂zk
(z + τw)wjwk ≥ 0.

Remark 25.1. The Hermitian form Lu(w) = u′′z,zw · w ≥ 0 is called the Levi form of u.

Plurisubharmonic functions have the following properties:

Proposition 25.2. If Ω ⊆ Cn is connected and u 6≡ −∞ is plurisubharmonic in Ω, then
u ∈ L1

loc.

Proof. Use the same argument as for subharmonic functions, using the sub-mean value
property. If n = 2, let D = D1 ×D2 ⊆ C2 be a polydisc with Dj = D(z0

j , rj). Then∫∫
D
u(z1, z2)L(d(z1, z2)) ≥

∫
D1

u(z1, z
0
2) dm ≥ m(D)u(z0

1 , z
0
2).

Proposition 25.3 (Regularization of plurisubharmonic functions). Let 0 ≤ ϕ ∈ C∞0 (Cn)
be such that

∫
ϕ = 1 and ϕ depends only on |z1|, . . . , |zn|. Then uε = u ∗ ϕε ∈ C∞ ∩ PSH,

where ϕε(z) = 1
ε2n
ϕ(z/ε), and uε ↓ u as ε ↓ 0.
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25.2 L2-estimates for the ∂-operator for several complex variables

Let Ω ⊆ Cn be open. We will study ∂u = f , where u ∈ L2
loc and f is a 1-form: f =∑

fj dzj .
13 Then

∂f = 0 ⇐⇒ ∂fj
∂zk

=
∂fk

∂zj
∀j, k, fj ∈ L2

loc

in the weak sense.
We will develop a Hilbert space approach to this problem. Let H1 = L2(Ω, e−ϕ1), where

ϕ1 ∈ C∞(Ω) is real. Let

H2 = L2
(0,1)(Ω, e

−ϕ2) = {f =
n∑
j=1

fj dzj : fj ∈ L2(Ω, e−ϕ2)}, ‖f‖2 =
∑
‖fj‖2ϕ2

,

where ϕ2 ∈ C∞(Ω). Consider the densely defined operator T : H1 → H2 sending u 7→ ∂u,
where

D(T ) = {u ∈ L2(Ω, e−ϕ1) | ∂u ∈ L2
(0,1)(Ω, e

−ϕ2) : ∃fj ∈ L2(Ω, eϕ2) s.t.
∂u

∂zj
= fj weakly}.

Definition 25.1. Let H1, H2 be Hilbert spaces. A linear map T : H1 → H2 with domain
D(T ) is closed if the graph of T , G(T ) = {x, Tx) : x ∈ D(T )} ⊆ H1 ×H2 is closed.

In other words, if xn ∈ D(T ) is such that xn → x ∈ H1 and Txn → y, then x ∈ D(T ),
and y = Tx.

We have that T = ∂ : L2(Ω, e−ϕ1)→ L2
(0,1)(Ω, e

−ϕ2) is closed. We have that Ran(T ) ⊆
F = {f ∈ L2

(0,1)(Ω, e
−ϕ2) : ∂f = 0 weakly} ⊆ H2, a closed subspace. We will try to show

that Ran(T ) = F for suitable ϕ1, ϕ2. Introduce the adjoint of T :

Definition 25.2. Let T : H1 → H2 be linear and densely defined. We define the adjoint
T ∗ : H2 → H1 as follows:

D(T ∗) = {v ∈ H2 : ∃f ∈ H1 s.t. 〈Tu, v〉H2
= 〈u, f〉H1

∀u ∈ D(T )}.

We let T ∗c = f (D(T ) is dense, so f is unique).

Remark 25.2. Like T itself, the adjoint may be unbounded.

Proposition 25.4. The adjoint satisfies the following property:

1. If T is closed and densely defined, then T ∗ is closed and densely defined.

2. T ∗∗ = T .

13This is sometimes called a (0, 1)-form, as it has no zj differentials.
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Example 25.2. Let H1 = L2(Ω, e−ϕ1), H2 = L2
(0,1)(Ω, e

−ϕ2). and T = ∂. Then

D(∂
∗
) = {v ∈ L2

(0,1)(Ω, e
−ϕ2) : ∀u ∈ D(∂),

n∑
j=1

∫
Ω

∂u

∂zj
vje
−ϕ2 L(dz) =

∫
Ω
ufe−ϕ1 L(dz)

for some f ∈ L2(Ω, e−ϕ1)}.

By integration by parts, C∞0,(0,1)(Ω) ⊆ D(∂
∗
). If v ∈ D(∂

∗
), we get taking u ∈ C∞0 that

f = ∂
∗
v = −

∑n
j=1 e

ϕ1∂zj (e
−ϕ2vj), where these are weak derivatives.

We have a closed T : H1 → H2 where Ran(T ) ⊆ F ⊆ H2 is closed. Next time, we will
show the following.

Lemma 25.1. Ran(T ) = F if and only if there exists C > 0 such that ‖f‖H2 ≤ C‖T ∗f‖H1

for all f ∈ F ∩D(T ∗).
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26 L2 Estimates for The ∂ Operator in Several Complex
Variables (cont.)

26.1 Conditions for an operator to be surjective

We have an operator T : L2(Ω, e−ϕ1) → L2
(0,1)(Ω, e

−ϕ2), acting as ∂, where Ω ⊆ Cn is

open and ϕ1, ϕ2 ∈ C∞(Ω) are real weights to be chosen. Also Ran(T ) ⊆ F = {f ∈
L2

(0,1)(Ω, e
−ϕ2) : ∂f = 0}.

Lemma 26.1. Let T : H1 → H2 be linear, closed, and densely defined with Ran(T ) ⊆ F ,
where F is a closed subspace of H2. Then Ran(T ) = F if and only if there is a C > 0 such
that ‖F‖H2 ≤ C‖T ∗f‖H1 for all f ∈ F ∩D(T ∗).

Proof. ( =⇒ ): Consider the map T : D(T ) → F , which are Banach spaces if D(T ) is
equipped with the graph norm ‖u‖D(T ) := ‖u‖+ ‖Tu‖. T is continuous and surjective, so
T is open by the open mapping theorem. Then T ({u : ‖u‖D(T ) < 1}) ⊇ {f ∈ F : ‖f‖ < ε}
for some ε > 0. We get that there is a C > 0 such that for all g ∈ F , there is a u ∈ D(T )
such that Tu = f and ‖u‖H1 ≤ C‖g‖H2 . When f ∈ D(T ∗) ∩ F ,

| 〈f, g〉H2
| = | 〈f, Tu〉H2

| = | 〈T ∗f, u〉 | ≤ C‖T ∗f‖H1‖g‖H2 .

We get that ‖f‖H2 ≤ ‖T ∗f‖H1 .
(⇐= ): Assume that the bound holds for all f ∈ F ∩D(T ∗). We have Ran(T ) ⊆ F . Let

g ∈ F . We claim that the antilinear map L(T ∗f) = 〈f, g〉H2
(for f ∈ D(T ∗)) is well-defined

and satisfies |L(T ∗f)| ≤ C‖g‖H2‖T ∗f‖H1 .
We can write f = f! + f2, where f1 ∈ F , and f2 ∈ F⊥ for any f ∈ D(T ∗). Now

〈f2, Tu〉 = 0 for any u ∈ D(T ), so f2 ∈ D(T ∗); in particular, T ∗f2 = 0. So f1 ∈ F ∩D(T ∗),
and we get

|L(T ∗f)| = 〈g, f1〉 ≤ C‖g‖H2‖T ∗f1︸ ︷︷ ︸
=T ∗f

‖H1 .

So we get the claim.
We get that the map L extends by continuity to Ran(T ∗) ⊆ H1. So there is a u ∈

Ran(T ∗) such that L(T ∗f) = 〈u, T ∗f〉H1
for all f ∈ D(T ∗). On the other hand, L(T ∗f) :=

〈g, f〉H2
, so we get 〈T ∗f, u〉 = 〈f, g〉 for all f ∈ D(T ∗). This implies that u ∈ D((T ∗)∗) =

D(T ) and Tu = g. We also get that

‖u‖H1 = ‖L‖ ≤ C‖g‖H2 .

26.2 Hörmander’s idea and the density lemma

In our setting H1 = L2(Ω, e−ϕ1), H2 = L2
(0,1)(Ω, e

−ϕ2), T = ∂, and F = {f ∈ H2 : ∂f = 0}.
So we want to show that

‖f‖H2 ≤ C‖T ∗f‖H1 , f ∈ F ∩D(T ∗).
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Introduce the space of 2-forms

H3 = L2
(0,2)(Ω, e

−ϕ3) = F =
∑
j,k

Fj,k dzj ∧ dzk : Fj,k ∈ L2(Ω, e−ϕ3),

and consider the closed, densely defined operator S : H2 → H3 which sends f 7→ ∂f =∑
j ∂fj ∧ dzj =

∑
j,k

∂fj
∂zk

dzk ∧ dzh. We have F = ker(S). Rather than trying to prove the
bound, we shall try to prove

‖f‖2H2
≤ C(‖T ∗f‖2H1

+ ‖Sf‖2H3
), ∀f ∈ D(T ∗) ∩D(S).

This looks stronger, but it has symmetry properties we can exploit.
The idea, due to Hörmander, is to choose the weights ϕ1, ϕ2, ϕ3 so that the 1-forms with

coefficients in C∞0 (Ω) are dense with respect to the graph norm f 7→ ‖f‖H2 + ‖T ∗f‖H1 +
‖Sf‖H3 .

Lemma 26.2 (Density lemma). Let (ην) be a sequence in C∞0 (Ω) such that 0 ≤ ην ≤ 1
and such that for any compact K ⊆ Ω, ην = 1 on K for all large ν. Assume that

e−ϕj+1 |∂ην |2 ≤ Ce−ϕj , ∀ν, j = 1, 2.

Then C∞0,(0,1)(Ω) is dense in D(T ∗) ∩D(S) with respect to the graph norm.

Remark 26.1. If Ω = Cn, we can take ην(z) = η(z/ν) for some function η which is 1 near
0. Then we can take ϕ1 = ϕ2 = ϕ3.

Proof. Step 1: Suppose f ∈ D(T ∗) ∩D(S) has compact support. Approximate by f ∗ ψε,
where ψε(z) = ε−2nψ(z/ε) and ψ ∈ C∞0 .

Step 2: Given f ∈ D(T ∗) ∩D(S), consider ηνf ∈ D(T ∗) ∩D(S). Then S(ηjf) → Sf
in H3. Then

S(ηjf) = ηjSf︸ ︷︷ ︸
L2
ϕ3

+ [S, ηj ]︸ ︷︷ ︸
=(∂ηj)f

L2
ϕ3−−→ Sf

by dominated convergence.

We will review this last point in more detail next time.
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27 L2-Estimates for the ∂-Operator: The Density Lemma

27.1 The density lemma

In solving our ∂ problem, we have

L2(Ω, e−ϕ1)
T−→ L2

(0,1)(Ω, e
−ϕ2)

S−→ L2
(0,2)(Ω, e

−ϕ3).

We want to show that

‖f‖ϕ2 ≤ C(‖T ∗f‖2ϕ1
+ ‖Sf‖2ϕ3

), ∀f ∈ D(T ∗) ∩D(S).

We had the following lemma:

Lemma 27.1 (Density lemma). Let (ην) be a sequence in C∞0 (Ω) such that 0 ≤ ην ≤ 1
and such that for any compact K ⊆ Ω, ην = 1 on K for all large ν. Assume that

e−ϕj+1 |∂ην |2 ≤ Ce−ϕj , ∀ν, j = 1, 2.

Then C∞0,(0,1)(Ω) is dense in D(T ∗) ∩D(S) with respect to the graph norm.

Proof. Step 1: Suppose f ∈ D(T ∗) ∩D(S) has compact support. Approximate by f ∗ ψε,
where ψε(z) = ε−2nψ(z/ε) and ψ ∈ C∞0 .

Step 2: Let f ∈ D(T ∗) ∩ D(S). We claim that ηjf ∈ D(T ∗) ∩ D(S). To show that
ηjf ∈ D(S),

∂(ηjf) = ηj ∂f︸︷︷︸
∈L2

ϕ3︸ ︷︷ ︸
∈L2

ϕ3

+ ∂ηj ∧ f︸ ︷︷ ︸
∈L2

ϕ3

.

To show that ηjf ∈ D(T ∗), consider for u ∈ D(T ),

〈Tu, ηjf〉ϕ2
= 〈ηjTu, f〉ϕ2

Observe that ηjTu = ηj∂u = ∂(ηju)− u∂ηj , where ηju ∈ D(T ).

= 〈T (ηju), f〉ϕ2
−
∫
u
〈
∂η, f

〉
e−ϕ2

= 〈u, ηjT ∗f〉ϕ1
−
〈
u, eϕ1−ϕ2

〈
∂η, f

〉〉
ϕ1
.

So
T ∗(ηjf) = ηjT

∗f − e−ϕ1−ϕ2
〈
∂η, f

〉
.

We now check that ηjf → f in the graph norm.

1. ηjf → f in L2
ϕ2

: This follows by the dominated convergence theorem.

75



2. S(ηjf)→ Sf in Lϕ3 : We have

S(ηjf) = ∂(ηjf) = ηj Sf︸︷︷︸
∈L2

ϕ3︸ ︷︷ ︸
→Sf in L2

ϕ3

+ ∂ηj ∧ f︸ ︷︷ ︸
→0 in L2

ϕ3

So we get that ∫
|∂ηj |2e−ϕ3︸ ︷︷ ︸
≤e−ϕ2

|f |2 → 0

by the dominated convergence theorem.

3. T ∗(ηjf)→ T ∗f in L2
ϕ1

is similar.

27.2 Applying the lemma

Now let ψ ∈ C∞(Ω) be given by the locally finite sum

eψ = 1 +
∞∑
ν=1

|∂ην |2.

Let ϕj = ϕ + (j − 3)ψ for j = 1, 2, 3 (ϕ is to be chosen). With this choice of weights, we
can satisfy the hypotheses of the density lemma.

We will now study our estimate

‖f‖2ϕ2
≤ C(‖T ∗f‖@ϕ1

+ ‖Sf‖2ϕ2
), f ∈ C∞0 .

Recall the formula for T ∗:

T ∗f = −eϕ1

∞∑
j=1

∂zj (fje
−ϕ2) = −eϕ−2ψ

∞∑
j=1

∂zj (fje
ψ−ϕ).

Then

eψT ∗f = −
∑

δjfj −
∑

fj∂zjψ, δj := ∂zj − ∂zjϕ.

Here, −δj is the adjoint of ∂zj in L2
ϕ.

Consider

‖T ∗f‖2ϕ1
=

∫
|T ∗f |2e−ϕ+2ψ = ‖eψT ∗f‖ϕ.

Then, using Cauchy-Schwarz or the triangle inequality,∥∥∥∑ δjfj

∥∥∥2

ϕ
= ‖eψT ∗f + 〈f, ∂ψ〉 ‖2ϕ
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≤ 2‖T ∗f‖2ϕ1
+ 2

∫
|〈t, ∂ψ〉|2e−ϕ.

Compute ‖Sf‖2ϕ3
:

Sf = ∂f =
∑
j<k

(
∂dk
∂zj
− ∂fj
∂zk

)
dzj ∧ dzk.

So

‖Sf‖2ϕ3
=
∑
j<k

∫ ∣∣∣∣∂fk∂zj
− ∂fj
∂zk

∣∣∣∣2 e−ϕ
=

1

2

∑
j,k

∫ ∣∣∣∣∂fk∂zj
− ∂fj
∂zk

∣∣∣∣2 e−ϕ
=

∫ ∑
j,k

∣∣∣∣∂fk∂zj

∣∣∣∣2 e−ϕ −
∑

j,k

∂fj
∂zk

∂fk
∂zj

 e−ϕ

Add ‖Sf‖2ϕ3
to both sides of the inequality. We get the following estimate:∥∥∥∑ δjfj

∥∥∥2

ϕ
−
∑
j,k

〈
∂zkfj , ∂zjfk

〉
ϕ
≤ 2‖T ∗f‖2ϕ1

+ 2

∫
|〈f, ∂ψ〉|2e−ϕ + ‖Sf‖2ϕ3

.

The main point of the argument is that

〈δjfj , δk, fk〉ϕ −
〈
∂zkfj , ∂zjfk

〉
ϕ

= −〈∂zkδjfj , fk〉ϕ +
〈
δzj∂zkfj , fk

〉
ϕ

=
〈
[δzj , ∂zk ]fj , fk

〉
ϕ
.

The commutator equals

[∂zj − ∂zjϕ, ∂zk ] =
∂2ϕ

∂zj∂zk
.

So the lower bound becomes ∫ ∑
j,k

∂2ϕ

∂zj∂zk
fjfke

−ϕ,

where ∂2ϕ
∂zj∂zk

is the Levi form of ϕ(f). Now we can choose ϕ to be plurisubharmonic.

We will conclude our discussion next time.
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28 L2-Estimates for the ∂-Operator

28.1 Solution of the ∂ problem

Recall that

n∑
j,k=1

∫
Ω

∂ϕ

∂zj∂zk
fjfke

−ϕ L(dz) ≤ 2

∫
|f |2|∂ψ|2e−ϕ + 2‖T ∗f‖2ϕ1

+ ‖Sf‖2ϕ3
,

where f ∈ C∞0,(0,1)(Ω), Ω ⊆ Cn is open, ϕ1 = ϕ−2ψ, and ϕ3 = ϕ. Assume that ϕ ∈ C∞(Ω)

is strictly plurisubharmonic: there exists 0 < c(z) ∈ C(Ω) such that

n∑
j,k=1

∂2ϕ

∂zj∂zk
wjwk ≥ c(z)|w|2, z ∈ Ω, w ∈ Cn.

First consider the simplest case, Ω = Cn. We can then take ψ = 0, and it follows that∫
c|f |2e−ϕ ≤ ‖T ∗f‖2ϕ + ‖Sf‖ϕ, f ∈ C∞0,(0,1)(C

n).

Recall that T = ∂ : L2(Cn, e−ϕ) → L2
(0,1)(C

n, e−ϕ) and S = ∂ : L2
(0,1)(C

n, e−ϕ) →
L2

(0,2)(C
n, e−ϕ) are closed and densely defined with natural domains, By the density lemma,

this inequality extends to all f ∈ D(T ∗) ∩D(S).

Theorem 28.1. Let ϕ ∈ C∞(Cn) be strictly plurisubharmonic with

n∑
j,k=1

∂2ϕ

∂zj∂zk
wjwk ≥ c(z)|w|2, 0 < c ∈ C(Cn).

Then for all g ∈ L2
(0,1)(C

n, e−ϕ) with ∂g = 0 and
∫
|g|2/ce−ϕ < ∞, there exists some

u ∈ L2(Cn, e−ϕ) such that ∂u = g and∫
|u|2e−ϕ ≤

∫
|g|2

c
.

Proof. We must solve the equation Tu = g so that the above conclusion holds. Note that

Tu = g ⇐⇒ ∀f ∈ D(T ∗), 〈Tu, f〉ϕ = 〈g, f〉 (D(T ∗) is dense)

⇐⇒ 〈u, T ∗f〉ϕ = 〈g, f〉ϕ ∀f ∈ D(T ∗) (T is closed).

We claim that

| 〈g, f〉ϕ | ≤ ‖T
∗f‖ϕ

(∫
|g|2

c
e−ϕ

)1/2

, f ∈ D(T ∗).
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Indeed, if f is orthogonal to ker(S) 3 g, then the left hand side equals 0. Also, ran(T ) ⊆
ker(S), so if 〈f, Tu〉ϕ = 0 for all u ∈ D(T ), then f ∈ D(T ∗) and T ∗f = 0; so the right
hand side equals 0. If f ∈ D(T∗) ∩ ker(S), we get (by Cauchy-Schwarz) that

| 〈g, f〉ϕ |
2 =

∣∣∣∣∫ 〈g, f〉 e−ϕ∣∣∣∣2
≤
(∫

c|f |2e−ϕ
)∫

|g|2

c
e−ϕ

≤ ‖T ∗f‖2ϕ
∫
|g|2

c
e−ϕ.

The claim follows, and the antilinear form T ∗f 7→ 〈g, f〉ϕ for f ∈ D(T ∗) extends to a

continuous linear form on L2(Cn, e−ϕ) with norm ≤
(∫ |g|2

c e
−ϕ
)1/2

.

So there exists some u ∈ L2(Cn, e−ϕ) with ‖u‖2ϕ ≤
∫ |g|2

c e
−ϕ and 〈g, f〉ϕ = 〈u, T ∗f〉 for

all f ∈ D(T ∗). So u ∈ D(T ), and Tu = g.

28.2 Extensions

Arguing as in the 1 dimensional case, replacing ϕ by ϕ+ 2 log(1 + |z|2) (the latter term is
strictly plurisubharmonic on Cn) and regularizing ϕ, we get the following result:

Theorem 28.2. Let ϕ ∈ PSH(Cn) with ϕ 6≡ −∞. For all g ∈ L2
(0,1)(C

n, e−ϕ) such that

g = 0, there exists a u ∈ L2
loc(Cn, e−ϕ) such that ∂u = g and

2

∫
|u|2e−ϕ(1 + |z|2)−2 ≤

∫
|g|2e−ϕ.

Remark 28.1. There exist analogous results when Cn is replaced by an open set Ω ⊆ Cn,
provided that Ω is pseudoconvex: there exists u ∈ C(Ω)∩PSH(Ω) such that for all t ∈ R,
the set {z ∈ Ω : u(z) < t} is relatively compact in Ω. (Notice that any open set Ω ⊆ C is
pseudoconvex.)
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